Читать книгу Статистические методы, используемые в маркетинговых исследованиях - Маргарита Акулич - Страница 7

II Применение в маркетинге Корреляционного и регрессионного анализа
2.4 Пробит-модель регресси. Регрессия Кокса. Анализ временных рядов

Оглавление

Пробит-модель регрессии


Фото из источника в списке литературы [6]


Пробит-модель является статистической моделью бинарного выбора, используемой для того, чтобы предсказывать вероятность возникновения какого-то события на базе функции нормального стандартного распределения.

Модель пробит-регрессии, подобно модели логистической регрессии, относят к виду моделей бинарного выбора. По этой причине задачи ее построения и функции такие же, как в логит-модели.

В модели пробит-регрессии выражение расчетного значения зависимой переменной выступает в качестве значения функции нормального стандартного закона распределения. Пробит является значением, для которого исследователи вычисляют функцию нормального стандартного распределения. Имеет место зависимость значения пробита от комбинированных линейных значений факторных переменных. Для пробит-модели (также как и для логит-модели) зависимая переменная – дихотомическая. К факторам в пробит-модели предъявляется требование, чтобы они были количественно выраженными либо категориальными, но преобразованными в переменные дихотомические.

Применение пробит-модели относительно сферы аналогично применению логистической регрессии. Если осуществить моделирование и классификацию по пробит-модели и также по модели логистической регрессии, то результаты окажутся весьма сходными. Но в некоторых случаях результаты могут разниться.


Регрессия Кокса


Фото из источника в списке литературы [7]


Регрессионную модель Кокса считают статистической моделью зависимости функции риска от переменных-факторов независимого вида.

Регрессию Кокса рассматривают в качестве модели отличающихся пропорциональностью рисков. Благодаря ей прогнозируют риск наступления события для какого-то объекта и оценивают влияние определенных заранее независимых предикторов (переменных) на данный риск. Риск рассматривают в качестве зависящей от времени функции. Риск не является вероятностью, поэтому его значения могут превышать единицу.

Объектом может быть клиент, для которого в маркетинге практикуется прогнозирование риска наступления некого события. Объект находится в поле зрения априори (то есть его постоянно наблюдают), в любой временной отрезок возможно наступление события, приводящего к его выбытию из группы риска. К примеру, таким событием может оказаться отказ клиента от товара либо услуги компании или его неспособность оплаты кредита.

Статистические методы, используемые в маркетинговых исследованиях

Подняться наверх