Читать книгу Photovoltaism, Agriculture and Ecology - Martine Hossaert-McKey - Страница 2
ОглавлениеTable of Contents
1 Cover
6 Introduction How can we combine energy and ecological transition?
7 1 Photovoltaics: Concepts and Challenges 1.1. Brief description of the different photovoltaic cell technologies 1.2. Different types of photovoltaic installations 1.3. Legislation 1.4. Advantages of photovoltaics 1.5. Disadvantages of photovoltaics 1.6. Some figures on the environmental footprint compared to other energy sources 1.7. Origin of the silicon needed for the construction of photovoltaic cells 1.8. End of life of solar panels 1.9. Degree of maturity of material recycling 1.10. Location and mode of development of photovoltaics
8 2 Photovoltaic Energy Production and Agricultural Activity: Agrivoltaics 2.1. Definition–legislation–adaptation and evolution of techniques 2.2. Food crops
9 3 Innovative Principle of Ecovoltaics 3.1. Definition and concept 3.2. State of the art: feedback 3.3. Assessment – issues 3.4. Perspectives
10 Appendices
11 Appendix 1 Secondary Metabolites and Defense Molecules of Eagle Fern A1.1. Prunasin A1.2. Ptaquiloside (also called aquilide A) A1.3. Thiaminase I (antithiamine) A1.4. Other metabolites
12 Appendix 2 Secondary Metabolites and Defense Molecules of Alder Buckthorn
13 Appendix 3 Secondary Metabolites and Defense Molecules of Rhubarb A3.1. Carboxylic acids A3.2. Minerals A3.3. Anthraquinones A3.4. Stilbenes A3.5. Flavonoids
14 References
15 Index
List of Illustrations
1 IntroductionFigure I.1. Some numerical data illustrating global warmingFigure I.2. The climate agreement, Paris, December 2015. The photograph shows La...Figure I.3. A necessary energy and ecological transitionFigure I.4. Structure of the book
2 Chapter 1Figure 1.1. Photograph of Edmond Becquerel by NadarFigure 1.2. Photovoltaic effectFigure 1.3. Global depletion of mineral resources (Hunt et al. 2015). For a colo...Figure 1.4. French solar energy potential...Figure 1.5. Photovoltaic power in France, 2018....Figure 1.6. Photovoltaics and solar radiation capture surfaces...Figure 1.7. Cost of electricity production in 2020...Figure 1.8. Breakdown of direct and indirect primary energy consumption in agric...Figure 1.9. Agricultural shed with photovoltaic roof in the vineyards of Juranço...Figure 1.10. Solar facade of a Montpellier Méditerranée Métropole business cente...Figure 1.11. The airport photovoltaic area of MontpellierFigure 1.12. Large EDF solar park in the Atacama Desert, Chile; 700 hectare sola...Figure 1.13. World map of global solar irradiance (annual and daily average) (so...Figure 1.14. Omega 1 floating solar power plant in the commune of Piolenc (PACA ...
3 Chapter 2Figure 2.1. Photovoltaic farm with spaced static panelsFigure 2.2. Photovoltaic farm with modules mounted on piles with alternating cul...Figure 2.3. Example of vertical photovoltaic panels, solar farm in Donaueschinge...Figure 2.4. Solar park with vertical photovoltaic panels in Eppelborn, Dirmingen...Figure 2.5. Operation of the dynamic technology (example of Sun’Agri, France). F...Figure 2.6A. Different systems for combining agricultural production and electri...Figure 2.6B. Different systems for combining agricultural production and electri...Figure 2.7. First Agrienergy greenhouses in the Pacific, Focola site in New Cale...Figure 2.8. Fishponds of the Etang-Salé solar aquaculture farm in Reunion Island...Figure 2.9. Bassin de Thau, Occitanie, France: a place of innovation in the fiel...Figure 2.10. Solar panels installed in vineyards at Domaine de Nidolères, France...Figure 2.11. Strawberry cultivation under photovoltaic panels; Babberich, Hollan...Figure 2.12. Solar field and lemongrass cultivation in Pierrefonds, Reunion Isla...Figure 2.13. Photovoltaics and livestock; maintenance of a park by a flock of sh...Figure 2.14. Influence of a photovoltaic system on soil moisture and water use e...
4 Chapter 3Figure 3.1. Experimental site under solar panels in Boissière (Gard, Occitanie) ...Figure 3.2. Lasagna technique developed by B. Lapouge-Déjean (Lapouge-Déjean et ...Figure 3.3. Lasagna installation under solar panelsFigure 3.4. Eagle fern growing under solar panels in Boissière (Gard)...Figure 3.5. Growing alder buckthorn under solar panels in Boissière (Gard) (sour...Figure 3.6. Comfrey flowering under solar panels in Boissière (Gard)....Figure 3.7. Chemical structure of allantoinFigure 3.8. Rhubarb plant under solar panels in Boissière (Gard)...Figure 3.9. a) Leaf of grapevine infested by downy mildew without treatment (115...Figure 3.10. ε-viniferin and δ-viniferinFigure 3.11. Scotch broom, Latin American fleabane and alder buckthorn under sol...Figure 3.12. Melissa officinalis, December 19, 2019 (credit: C. Grison)Figure 3.13. Melissa officinalis, July 2, 2020 (credit: C. Grison)Figure 3.14. Hyssopus officinalis, December 19, 2019 (credit: C. Grison)Figure 3.15. Hyssopus officinalis, July 7, 2020 (credit: C. Grison)Figure 3.16. Most attractive melliferous plants: bellflower, hyssop and lotus (s...Figure 3.17. Preparation of endangered plants under solar panels in Boissière (G...Figure 3.18. Growth of Vitis vinifera under solar panels in Boissière (Gard) (so...Figure 3.19. Soil enrichment through the construction of lasagnas under solar pa...Figure 3.20. Placement of traps on the experiment and on an outside area as a co...Figure 3.21. Insect traps: difference between control (a) and vegetated (b) plot...Figure 3.22. Lotus tetragonolobus floweringFigure 3.23. Campanula cochleariifolia floweringFigure 3.24. Categories of plant species that can be installed under solar panel...Figure 3.25. Diagram of legal approval for a new substance (ITAB 2019). For a co...
5 Appendix 1Figure A1.1. Molecular structure of PrunasinFigure A1.2. Mechanism of prunasin degradation (Chaouali 2013)Figure A1.3. Degradation of ptaquilosideFigure A1.4. Ptaquiloside and derivatives – defense molecules present in Eagle f...Figure A1.5. Mechanism of action of thiaminasesFigure A1.6. Seasonal variation of thiaminase concentration in Eagle fern (Evans...Figure A1.7. Structure of β-sitosterol
6 Appendix 2Figure A2.1. Chemical structure of an anthraquinoneFigure A2.2. Chemical structures of chrysophanol (1), physcione (2) and emodin (...Figure A2.3. Molecular structures of grapevine defense mechanisms
7 Appendix 3Figure A3.1. Gallic acid
List of Tables
1 Chapter 1Table 1.1. Different technologies of photovoltaic cellsTable 1.2. Greenhouse gas emissions by form of electricity generation, average v...Table 1.3. Maximum emissions of sulfur dioxide, nitrogen oxides, non-volatile or...
2 Chapter 2Table 2.1. Schematic balance between the advantages and disadvantages of agrivol...
3 Chapter 3Table 3.1. Structure of the lasagna installed under the solar panels in Boissièr...Table 3.2. Flowering period of honey plants. For a color version of this table, ...Table 3.3. Nectar and pollen quality of selected honey plantsTable 3.4. Identification of insects larger than 3 mmTable 3.5. Different laws concerning PNPPs
4 Appendix 3Table A3.1. Anthraquinones present in Rheum rhabarbarum Table A3.2. Main stilbenes present in Rheum rhabarbarum Table A3.3. Flavonoids present in Rheum rhabarbarum
Guide
1 Cover
10 Appendix 1 Secondary Metabolites and Defense Molecules of Eagle Fern
11 Appendix 2 Secondary Metabolites and Defense Molecules of Alder Buckthorn
12 Appendix 3 Secondary Metabolites and Defense Molecules of Rhubarb
13 References
14 Index
Pages
1 v
2 iii
3 iv
4 ix
5 x
6 xi
7 xiii
8 xiv
9 xv
10 xvi
11 xvii
12 xviii
13 xix
14 1
15 2
16 3
17 4
18 5
19 6
20 7
21 8
22 9
23 10
24 11
25 12
26 13
27 14
28 15
29 16
30 17
31 18
32 19
33 20
34 21
35 22
36 23
37 24
38 25
39 26
40 27
41 28
42 29
43 30
44 31
45 32
46 33
47 34
48 35
49 36
50 37
51 38
52 39
53 40
54 41
55 42
56 43
57 44
58 45
59 46
60 47
61 48
62 49
63 50
64 51
65 52
66 53
67 54
68 55
69 56
70 57
71 58
72 59
73 60
74 61
75 63
76 64
77 65
78 66
79 67
80 68
81 69
82 70
83 71
84 72
85 73
86 74
87 75
88 76
89 77
90 78
91 79
92 80
93 81
94 82
95 83
96 84
97 85
98 86
99 87
100 88
101 89
102 90
103 91
104 92
105 93
106 94
107 95
108 96
109 97
110 98
111 99
112 100
113 101
114 103
115 105
116 106
117 107
118 108
119 109
120 110
121 111
122 112
123 113
124 114
125 115
126 116
127 117
128 118
129 119
130 121
131 122
132 123
133 124
134 125
135 126
136 127
137 128
138 129
139 130
140 131
141 132
142 133
143 134
144 135
145 136
146 137
147 139
148 140
149 141
150 142