Читать книгу Diarylethene Molecular Photoswitches - Masahiro Irie - Страница 14

2.1 Basic Concepts

Оглавление

Thermal irreversibility is an essential and indispensable property for the applications of molecular photoswitches to memory media and switches. Although tremendous efforts were made in the 1970–1980s to provide the thermal irreversibility to molecular photoswitches, all attempts to modify existing photoswitchable molecules failed. We had to wait until the thermally stable molecular photoswitches were serendipitously discovered. In the beginning and the middle of the 1980s, it was found that furylfulgides and diarylethenes undergo thermally irreversible photoswitching. The photogenerated colored isomers practically never revert back to the colorless isomers at room temperature. Although they undergo thermally irreversible photoswitching, the reason why the molecules show the thermal stability was not understood. It was a crucial task to reveal the reason. The basic principle behind the thermally irreversible photoswitching reactivity was elucidated using both theoretical and experimental approaches, as follows.

The 2,3‐diphenyl‐2‐butene unit, shown in Figure 1.3, underwent a thermally reversible photoswitching reaction in a deaerated solution, while the 2,3‐di(2,5‐dimethyl‐3‐thienyl)‐2‐butene unit, shown in Figure 1.4B(b) exhibited a thermally irreversible reactivity. The photogenerated closed‐ring form of 2,3‐di(2,5‐dimethyl‐3‐thienyl)‐2‐butene was found to remain stable and practically never returned to the open‐ring form at room temperature. In addition, the open‐ring isomer was stable even at elevated temperatures and no thermochromic reaction was observed. To reveal the reason why the diarylethene having phenyl rings and that having thiophene rings exhibit such a different reactivity, semiempirical modified neglect of diatomic overlap (MNDO) calculation was carried out for diarylethene derivatives 9–12 (Scheme 2.1) [1].


Scheme 2.1 Electrocyclic reactions of diarylethenes 912.

For electrocyclic reactions, two modes of geometrical structure changes, conrotatory and disrotatory, are distinguished, as shown in Scheme 2.2. According to the Woodward‐Hoffmann rule [2] based on π‐orbital symmetries for 1,3,5‐hexatriene (HT), which is the simplest molecular framework of the above molecules, the conrotatory cyclization reaction to cyclohexadiene (CHD) is brought about by light and the disrotatory cyclization by heat.

Scheme 2.2 Disrotatory and conrotatory cyclization reactions of hexatriene.

The cycloreversion reaction is allowed photochemically in the conrotatory mode and thermally in the disrotatory mode. From this simple symmetry consideration of the HT molecular framework, the thermal stability of the open‐ring isomer of 2,3‐di(2,5‐dimethyl‐3‐thienyl)‐2‐butene and thermal irreversibility in the cycloreversion reaction cannot be explained. A state energy calculation is necessary to discuss the thermal stability.

Figures 2.1 and 2.2 show the state correlation diagrams for the electrocyclic reactions of 9 and 11 in disrotatory and conrotatory modes, respectively. Full lines in the figures show that interconnecting states belong to the same symmetry groups. The relative ground state energy differences between the open‐ and closed‐ring isomers are shown in Table 2.1. The two heterocyclic rings were assumed to be in the parallel orientation for the disrotatory reaction and in the antiparallel orientation for the conrotatory reaction. As can be seen from Figure 2.1, orbital symmetry allows the disrotatory cyclizations in the ground states from 9o to 9c and from 11o to 11c. The relative ground state energies of the closed‐ring isomers of 9 and 11 are, however, 175 and 113 kJ/mol higher than the respective energies of the open‐ring isomers. This indicates that the open‐ring isomers are stable and the thermal cyclization reaction does not take place practically in both cases.


Figure 2.1 State correlation diagrams for the electrocyclic reactions in disrotatory mode. 9c and 11c are the closed‐ring isomers, in which two hydrogens attached to the reactive central carbons are in a cis configuration.


Figure 2.2 State correlation diagrams for the electrocyclic reactions in conrotatory mode. 9c and 11c are closed‐ring isomers, in which two hydrogens attached to the reactive central carbons are in a trans configuration.

Table 2.1 Relative ground state energy differences between the open‐ and closed‐ring isomers.

Compound Disrotatory (kJ/mol) Conrotatory (kJ/mol)
1,2‐Diphenylethene (9) 175 114
1,2‐Di(3‐pyrrolyl)ethene (10) 135 65
1,2‐Di(3‐furyl)ethene (11) 113 38
1,2‐Di(3‐thienyl)ethene (12) 51 −14

On the contrary, orbital symmetry forbids the conrotatory cyclizations in the ground states from 9o to 9c and from 11o to 11c, because each S0 open‐ring isomer state correlates with a highly excited state of the closed‐ring isomer, as shown in Figure 2.2. On the other hand, no such large barrier exists in the S1 state for 9o and the S2 state for 11o. This indicates that electrocyclic reactions of both 1,2‐diphenylethene and 1,2‐bis(3‐furul)ethene are allowed in the photochemically excited states.

What should be discussed here is the stability of the closed‐ring isomers. Figure 2.2 shows that in both 9c and 11c, the cycloreversion reactions in the ground state have to overcome energy barriers, and the barriers correlate with ground state energy differences between the open‐ and closed‐ring isomers. The calculated energy differences are shown in Table 2.1. When the energy difference is large, as in the case of 9, the energy barrier becomes small and the cycloreversion reaction takes place readily. On the other hand, the energy barrier becomes large when the energy difference is small. In this case, the cycloreversion reaction hardly takes place. The correlation between the ground state energy difference and the energy barrier is well explained by the Horiuti–Polanyi rule as shown in Figure 2.3. The energy difference in the ground states between the open‐ and closed‐ring isomers controls the stability of the closed‐ring isomers.


Figure 2.3 Correlation between the ground state energy difference between open‐ and closed‐ring isomers and the energy barrier.

The next question is what causes the difference in the ground state energy levels of the two isomers. First, strain energies of the six‐membered rings of the closed‐ring isomers were compared. The optimized geometries of the closed‐ring isomers, 9c and 11c, however, showed almost identical six‐membered ring structures and the ring‐strain could not explain the energy difference. Next, the aromaticity change from the open‐ to the closed‐ring isomers was examined. During the cyclization reaction, phenyl and heterocyclic rings change the structures as shown in Scheme 2.3. The aromaticity of the rings is lost during the cyclization reactions. The energy differences between the right‐ and left‐side groups were calculated and are shown in Table 2.2. The aromatic stabilization energy of the aryl groups correlates well with the ground state energy difference. The highest energy difference was calculated for the phenyl group and the lowest one for the thienyl group. Destabilization due to destruction of the aromatic ring during the cyclization reaction increases the energy of the closed‐ring form. The aromaticity is the key molecular property that controls the thermal stability of the closed‐ring isomers.


Scheme 2.3 The structure changes of phenyl and five‐membered heterocyclic rings along with the cyclization reactions.

Table 2.2 Aromatic stabilization energy differences.

Group Energy (kJ/mol)
Phenyl 116
Pyrrol 58
Furyl 38
Thienyl 20

The theoretical prediction was confirmed by the synthesis of diarylethene derivatives with various types of aryl groups as shown in Figure 2.4. When the aryl groups are thiophene, benzothiophene, thiazole, or oxazole rings, which have low aromatic stabilization energy, the closed‐ring isomers are stable (more than 12 hours at 80 °C). On the other hand, photogenerated closed‐ring isomers of diarylethenes with indole rings, which have intermediate aromatic stabilization energy, undergo thermally reversible photoswitching (half‐life time at 80 °C of 16c: 2.5 hours). The closed‐ring isomers of diarylethene derivatives with phenyl rings readily returned back to open‐ring isomers (half‐life time at 20 °C of 18c: 1.5 minutes).


Figure 2.4 Thermal stability of diarylethene derivatives. Any appreciable change of the absorption intensity of the closed‐ring isomer was not observed in the thermally stable derivatives for more than 12 hours at 80 °C.

From the above theoretical and experimental results, the guiding principle for the synthesis of thermally irreversible diarylethenes is defined as follows.

The thermally irreversible photoswitching diarylethenes can be prepared by employing aryl groups with low aromatic stabilization energy.

Diarylethene Molecular Photoswitches

Подняться наверх