Читать книгу Наука сознания. Современная теория субъективного опыта - Майкл Грациано - Страница 5

Глава 2
Крабы и осьминоги

Оглавление

Самовоспроизводящаяся бактериальная жизнь появилась на Земле примерно 4 млрд лет назад. На протяжении почти всей истории Земли жизнь оставалась на одноклеточном уровне, и ничего похожего на нервную систему не существовало вплоть до 600–700 млн лет назад. В теории схемы внимания сознание основано на определенном способе обработки информации нервной системой. Ключевой элемент этой теории (и, я полагаю, любого развитого интеллекта) – внимание: способность мозга в каждый момент времени сосредоточивать свои ограниченные ресурсы на небольшом фрагменте мира, чтобы получить бóльшую глубину обработки. В этой и нескольких следующих главах я рассмотрю, как внимание могло развиться от древних животных до людей и как вместе с ним могло появиться свойство, которое мы называем сознанием[11].

Начнем с морских губок, они “помогут” очертить границы эволюции нервной системы. Губки – самые примитивные многоклеточные организмы, у них нет так называемого плана тела, нет конечностей, нет мышц, – и нервы им не нужны. Они закрепились на дне океана и фильтруют питательные вещества подобно ситу. Но у нас есть общие с губками гены, в том числе не менее 25 из тех, которые у людей помогают структурировать нервную систему[12]. У губок те же самые гены могут выполнять более простые функции, например участвовать в коммуникации клеток друг с другом. Губки как будто балансируют на эволюционной грани нервной системы.

Считается, что последний общий у нас с ними предок существовал в диапазоне от 700 до 600 млн лет назад (см. шкалу времени на рис. 2.1)[13].


Другие древние животные – медузы – напротив, обладают нервной системой. Медузы плохо сохраняются в окаменелостях, но, анализируя их генетические взаимосвязи с другими животными, биологи предполагают, что они могли отделиться от остального животного царства примерно 650 млн лет назад[14]. Эти цифры, возможно, изменятся с получением новых данных, но в качестве правдоподобного предположения скажем, что нейроны – базовые клеточные компоненты нервной системы – впервые появились в животном царстве между губками и медузами.


Нейрон по сути своей – это клетка, передающая сигнал. Волна электрохимической энергии прокатывается по мембране клетки от одного края нейрона до другого со скоростью чуть более 60 м/с и действует на другой нейрон, мышцу или железу. Самые первые нервные системы могли быть устроены как простые сети нейронов, пронизывающие тело и соединяющие мышцы. По этому принципу нервных сетей существуют гидры[15]. Это небольшие водные создания, прозрачные, похожие на цветы, в роли тела у них выступает мешок со множеством щупалец; они принадлежат к той же древней категории, что и медузы. Если коснуться гидры в одном месте, нервная сеть распространит сигнал повсюду и вся гидра дернется.

Нервная сеть не обрабатывает информацию – не извлекает из нее какого-то значения. Она просто передает сигналы по телу, соединяет сенсорный стимул (прикосновение) с мышечной реакцией (подергивание). Но после возникновения нервной сети нервные системы довольно быстро перешли на новый уровень сложности: речь идет о способности усиливать некоторые сигналы относительно других. Форсирование сигнала – простой, но мощный прием, один из основных способов, посредством которых нейроны манипулируют информацией. Это базовый компонент практически всех известных нам вычислений, происходящих в мозге.

Один из наиболее изученных примеров – глаз краба[16]. У этого животного сложные глаза со множеством детекторов, в каждом из которых есть нейрон. Когда свет падает на детектор, он активирует находящийся внутри нейрон. Пока все идет как надо. Но добавим щепотку сложности: каждый нейрон связан с ближайшими соседями и по этим связям они соревнуются друг с другом. Когда активируется нейрон в одном детекторе, он пытается приглушить активность нейронов в соседних, подобно человеку в толпе, который старается кричать громче всех и заглушить тех, кто рядом с ним.

В результате получается, что, если на глаз краба направлено размытое пятно света и на один из детекторов попадает самая яркая его часть, нейрон в этом детекторе развивает высокую активность, побеждает в соревновании и отключает соседей. Паттерн активности набора детекторов сигнализирует не только о пятне света, но и о том, что вокруг пятна – кольцо темноты. Таким образом, сигнал усилен. Глаз краба берет размытую реальность из оттенков серого и повышает ее резкость, получая контрастную картинку, где тени темнее, а яркое ярче. Усиление сигнала – прямое следствие того, что нейроны подавляют своих соседей: этот процесс называется латеральным торможением[17].

Описанный механизм в глазу краба, пожалуй, один из самых простых и базовых примеров, модельный экземпляр внимания. Сигналы соревнуются друг с другом, победители усиливаются за счет проигравших, и победившие сигналы затем влияют на движения животного. Это и есть моделирующая сущность внимания. Наше, человеческое, внимание – просто усложненная версия, состоящая из подобных компонентов. Латеральное торможение, такое же как в глазу у краба, можно найти на любой стадии обработки информации в нервной системе человека – от глаза до высших уровней мышления в коре головного мозга. Зарождение внимания лежит глубоко в эволюционной древности, ему более полумиллиарда лет, и произошло оно от удивительно простого нововведения (на тот момент, разумеется).

Крабы принадлежат к обширной группе животных под названием “членистоногие”, в которую входят пауки, насекомые и подобные им создания с твердыми сегментированными экзоскелетами. Они отделились от других животных около 600 млн лет назад[18]. Самое известное вымершее членистоногое, у которого сегодня больше всего поклонников, – это трилобит, существо из сочленений и ножек, похожее на маленького мечехвоста, которое главным образом копошилось на дне кембрийских морей примерно 540 млн лет назад. Когда трилобиты вымерли и оказались погребены в тончайшей взвеси осадка на дне океана, они превратились в окаменелости, у которых во всех подробностях сохранились фасеточные глаза[19]. Если вы вглядитесь в выпученные очи ископаемого трилобита через лупу, то, скорее всего, вам удастся увидеть нетронутую мозаику отдельных детекторов. Судя по ископаемым остаткам, глаза трилобитов весьма напоминали глаза современных крабов и, должно быть, в них использовался тот же способ соревнования между соседними детекторами, чтобы повысить резкость обзора древнего морского дна.


Представьте себе животное, которое собирается по частям, сосредоточиваясь на каждом конкретном фрагменте. У такого животного любая часть тела будет работать как отдельный механизм, отбирая себе информацию и выделяя самые перцептивно значимые (насыщенные) сигналы. Один глаз скажет: “Вот самое яркое пятно, не реагируй на остальные”. А в это же время одна из ног пожалуется: “Меня только что сильно ткнули вот сюда, не обращай внимания на легкие прикосновения рядом!” Животное, способное лишь на такое, будет действовать как сборище отдельных “деятелей”, которые склеены друг с другом просто физически, при этом каждый выкрикивает свои сигналы и вызывает свои собственные действия. Поведение такого животного будет в лучшем случае беспорядочным.

Для того чтобы непротиворечиво реагировать на окружающую среду, животному нужно более централизованное внимание. Могут ли отдельные источники входящей информации – глаза, тело, ноги, уши, химические сенсоры – объединить свои данные, чтобы создать глобальную иерархию и отсортировать соревнование между сигналами? Подобное взаимодействие позволило бы животному выделить тот самый яркий объект в окружающей среде, который показался бы важнее всего в данный момент, и отреагировать единым, значимым образом.

Никто не знает, когда впервые появилось такое централизованное внимание, – в частности, потому что никто не знает точно, у каких животных оно есть, а у каких нет. У позвоночных есть центральный процессор внимания, который я опишу в следующей главе. Но у беспозвоночных механизмы внимания не так тщательно изучены. У многих видов животных, например кольчатых червей и брюхоногих моллюсков, нет централизованного мозга. У них есть кластеры нейронов, или ганглии, разбросанные по всему телу для локальной обработки информации[20]. Вероятно, нет у этих животных и централизованного внимания.

Более подходящие кандидаты на обладание им – членистоногие, такие как крабы, насекомые и пауки. У них есть центральный мозг или, по крайней мере, скопление нейронов в голове, которое обильнее всех остальных в их телах[21]. Эти крупные ганглии могли развиться в том числе из-за каких-то потребностей зрения. Поскольку глаза расположены в голове, а зрение – самое сложное и нагруженное информацией чувство, голова получает самую большую долю нейронов. Некоторые аспекты обоняния, вкуса, слуха и осязания также сходятся в этом центральном ганглии. Насекомые мозговитее, чем мы думаем. Когда вы пытаетесь прихлопнуть муху, а ей практически всегда удается ускользнуть – это не просто рефлекс. Скорее, у мухи есть то, что мы называем централизованным вниманием – способность быстро сосредоточить ресурсы обработки информации на том фрагменте окружающего мира, который важнее всего в данный момент, чтобы выдать скоординированную реакцию[22].


Осьминоги – суперзвезды среди беспозвоночных: их интеллект поразителен. Их относят к моллюскам – как улиток и мидий. Моллюски появились, вероятно, около 550 млн лет назад и оставались довольно просто организованными – по крайней мере, в том, что касается нервной системы, – на протяжении сотен миллионов лет[23]. У одной из ветвей развития, головоногих моллюсков, постепенно развились сложный мозг и сложное поведение; формой они стали напоминать современных осьминогов примерно 300 млн лет назад[24].

Осьминоги, кальмары и каракатицы – поистине инопланетяне по отношению к нам[25]. Так далеко от нас на древе жизни нет других разумных животных. Они показывают нам, что мозговитый ум – не единичный феномен, так как он независимо развивался как минимум дважды: один раз в случае позвоночных, а затем снова у беспозвоночных. Осьминоги прекрасные хищники, а полагаются они на зрение. Хороший хищник должен обладать лучшей координацией и умом, чем его добыча, а использование зрения, чтобы обнаружить и распознать жертву, требует особо крупных моделирующих мощностей. Ни у какой другой сенсорной системы нет подобного пожарного шланга, хлещущего внутрь всевозможной информацией, и нет подобной необходимости в грамотном способе сосредоточиваться на полезных фрагментах этой информации. А значит, внимание для такого хищника решает всё. Может быть, этот-то образ жизни осьминога и повлиял на развитие его интеллекта.

По тем или иным причинам у этого животного развилась выдающаяся нервная система. Осьминоги могут использовать инструменты, решать задачи и демонстрируют неожиданные творческие подходы[26]. Классическим стал пример, в котором эти моллюски научились откручивать крышки стеклянных банок, чтобы добраться до лакомства внутри. У осьминога есть центральный мозг, а также небольшие независимые процессоры в каждом щупальце; таким образом получается уникальная комбинация централизованного и распределенного управления[27]. Также у животного, вероятно, есть модели самого себя: богатые, постоянно обновляющиеся сгустки информации для отслеживания своего тела и поведения. С инженерной точки зрения, чтобы функционировать эффективно, ему бы пригодились эти модели. Например, у моллюска может быть что-то вроде схемы тела, которая следит за его формой и структурой, чтобы координировать движения (возможно, у каждого щупальца есть своя схема себя). В этом смысле можно сказать, что осьминог знает о самом себе. Он обладает как этой информацией, так и сведениями об окружающем мире, и эти данные приводят к сложному поведению.

Но перечисленные действительно чудесные черты не означают, что у осьминога есть сознание.

Исследователи сознания иногда используют термин “объективное осознание” для обозначения того, что информация попала внутрь, обрабатывается и может повлиять на выбор поведения[28]. Это определение задает невысокую планку: так можно сказать, что микроволновая печь осознает настройки времени, а беспилотный автомобиль – надвигающееся препятствие. Да, осьминог объективно осознает себя и объекты вокруг. В нем содержится информация.

Но осознает ли он субъективно? Если бы осьминог умел говорить, мог бы он сообщить о субъективном опыте сознания так же, как мы с вами?

Давайте его и спросим. Проведите неправдоподобный мысленный эксперимент (и запомните его – он нам еще пригодится в этой книге). Предположим, в нашем распоряжении оказался потрясающий научно-фантастический прибор – назовем его Речинатор-5000, – который переводит информацию в речь. В нем есть порт, к которому можно подключить голову осьминога, и прибор вербализует информацию, найденную в мозге.

Прибор может озвучить что-то вроде: “Там рыба”, если зрительная система осьминога содержит информацию о рыбе, плывущей неподалеку. Он может сказать: “Я существо с кучей конечностей, которые могут двигаться так и сяк”. Или: “Чтобы достать рыбу из банки, нужно повернуть ту круглую штуку”. Прибор бы многое сказал, отражая информацию, которая, как мы знаем, содержится в нервной системе осьминога. Но нам неведомо, произнесет ли он: “У меня есть субъективный личный опыт – осознание – этой рыбы. Я не просто обрабатываю информацию о ней. Я ее переживаю. Я чувствую, каково это – видеть рыбу”. Мы не знаем, есть ли в мозге информация подобного рода, поскольку не в курсе того, что сообщают осьминогу его модели самого себя. У него, возможно, нет механизмов, чтобы смоделировать сознание или приписать себе это свойство. Применение понятия “сознание” по отношению к этому животному может оказаться нерелевантным.

Тайна осьминога – пример того, что животное может быть сложным и умным, а мы тем не менее все еще не в силах ответить на вопрос о его субъективном опыте или даже о том, есть ли смысл задавать такой вопрос применительно к этому существу.

Возможно, один из источников путаницы здесь – невольное, но мощное стремление человека приписывать сознание всему вокруг. Как я подчеркнул в первой главе, мы склонны видеть сознание у кукол и других, еще менее вероятных кандидатов. Люди иногда верят, что их домашние растения осознают. Осьминог, у которого богатый поведенческий арсенал и большие глаза, наполненные сфокусированным вниманием, является в некотором роде тестом Роршаха с чернильными пятнами, убедительно запускающим в нас сильное социальное восприятие. Мы не только умом понимаем, что он собирает объективную информацию о мире, – мы не можем не чувствовать, что из этих задумчивых глаз исходит субъективное осознание. Но правда состоит в том, что мы этого не знаем, и наше ощущение сознающего разума говорит больше о нас, чем об осьминогах. Специалисты, которые изучают осьминогов, рискуют стать самыми ненадежными экспертами, потому что именно на них прежде всех остальных подействуют чары этих удивительных созданий. Позже, в пятой главе, я вернусь к всепроникающему аспекту человеческого сознания: оно инструмент в нашем социальном арсенале, и мы безотчетно приписываем его тем, кто действует вокруг нас.

Чтобы внести ясность: я не утверждаю, что у осьминогов нет сознания. Но нервная система этих моллюсков до сих пор настолько неполно изучена, что мы не можем сравнить организацию их мозга с организацией нашего и предположить, до какой степени могут быть похожи на наши их алгоритмы и модели самих себя. Для проведения подобных сравнений нам нужно заняться животными из своей собственной родословной – позвоночными.

11

И другие авторы убедительно описывали возможный ход эволюции сознания, включая туда связи сознания с вниманием (хотя делали это иначе, чем я). К примеру: C. Montemayor and H. H. Haladjian, Consciousness, Attention, and Conscious Attention (Cambridge, MA: MIT Press, 2015); R. Ornstein, Evolution of Consciousness: The Origins of the Way We Think (New York: Simon & Schuster, 1991).

12

O. Sakarya, K. A. Armstrong, M. Adamska, M. Adamski, I. F. Wang, B. Tidor, B. M. Degnan, T. H. Oakley, and K. S. Kosik, “A Post-Synaptic Scaffold at the Origin of the Animal Kingdom,” PLoS One 2 (2007): e506.

13

Z. Yin, M. Zhu, E. H. Davidson, D. J. Bottjer, F. Zhao, and P. Tafforeau, “Sponge Grade Body Fossil with Cellular Resolution Dating 60 Myr before the Cambrian,” Proceedings of the National Academy of Sciences USA 112 (2015): E1453–60.

14

D. H. Erwin, M. Laflamme, S. M. Tweedt, E. A. Sperling, D. Pisani, and K. J. Peterson, “The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals,” Science 334 (2011): 1091–7; A. C. Marques and A. G. Collins, “Cladistic Analysis of Medusozoa and Cnidarian Evolution,” Invertebrate Biology 123 (2004): 23–42.

15

H. R. Bode, S. Heimfeld, O. Koizumi, C. L. Littlefield, and M. S. Yaross, “Maintenance and Regeneration of the Nerve Net in Hydra,” American Zoology 28 (1988): 1053–63.

16

R. B. Barlow Jr. and A. J. Fraioli, “Inhibition in the Limulus Lateral Eye in Situ,” Journal of General Physiology 71 (1978): 699–720.

17

K. Hadeler, “On the Theory of Lateral Inhibition,” Kybernetik 14 (1974): 161–5.

18

S. Koenemann and R. Jenner, Crustacea and Arthropod Relationships (Boca Raton: CRC Press, 2005).

19

B. Schoenemann, H. Pärnaste, and E. N. K. Clarkson, “Structure and Function of a Compound Eye, More Than Half a Billion Years Old,” Proceedings of the National Academy of Sciences USA 114 (2017): 13489–94.

20

R. Gillette and J. W. Brown, “The Sea Slug, Pleurobranchaea californica: A Signpost Species in the Evolution of Complex Nervous Systems and Behavior,” Integrative and Comparative Biology 55 (2015): 1058–69.

21

C. R. Smarandache-Wellmann, “Arthropod Neurons and Nervous System,” Current Biology 26 (2016): R960–R965.

22

S. Koenig, R. Wolf, and M. Heisenberg, “Visual Attention in Flies – Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing,” PLoS One 11 (2016): e0161412; B. van Swinderen, “Attention in Drosophila,” International Review of Neurobiology 99 (2011): 51–85.

23

D. H. Erwin, M. Laflamme, S. M. Tweedt, E. A. Sperling, D. Pisani, and K. J. Peterson, “The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals,” Science 334 (211): 1091–97; B. Runnegar and J. Pojeta Jr., “Molluscan Phylogeny: The Paleontological Viewpoint,” Science 186 (1974): 311–17.

24

J. Kluessendorf and P. Doyle, “Pohlsepia mazonensis, an Early ‘Octopus’ from the Carboniferous of Illinois, USA,” Palaeontology 43 (2000): 919–26; A. R. Tanner, D. Fuchs, I. E. Winkelmann, M. T. Gilbert, M. S. Pankey, A. M. Ribeiro, K. M. Kocot, K. M. Halanych, T. H. Oakley, R. R. da Fonseca, D. Pisani, and J. Vinther, “Molecular Clocks Indicate Turnover and Diversification of Modern Coleoid Cephalopods during the Mesozoic Marine Revolution,” Proceedings of Royal Society, B, Biological Sciences 284 (2017): 20162818.

25

P. Godfrey-Smith, Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness (New York: Farrar, Straus and Giroux, 2016); S. Montgomery, The Soul of an Octopus (New York: Atria Books, 2015).

26

A.-S. Darmaillacq, L. Dickel, and J. A. Mather, Cephalopod Cognition (Cambridge, UK: Cambridge University Press, 2014); D. B. Edelman, B. J. Baars, and A. K. Seth, “Identifying Hallmarks of Consciousness in Non-Mammalian Species,” Consciousness and Cognition 14 (2015): 169–87; J. N. Richter, B. Hochner, and M. J. Kuba, “Pull or Push? Octopuses Solve a Puzzle Problem,” PLoS One 11 (2016): e0152048.

27

B. Hochner, “An Embodied View of Octopus Neurobiology,” Current Biology 22 (2012): R887–92.

28

P. M. Merikle, D. Smilek, and J. D. Eastwood, “Perception without Awareness: Perspectives from Cognitive Psychology,” Cognition 79 (2001): 115–34; R. Szczepanowski and L. Pessoa, “Fear Perception: Can Objective and Subjective Awareness Measures Be Dissociated?” Journal of Vision 10 (2007): 1–17.

Наука сознания. Современная теория субъективного опыта

Подняться наверх