Читать книгу Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер - Страница 15
Часть I
Одиннадцать способов замедления старения
AMPK
Продукты, способные усилить AMPK
ОглавлениеИзвестно более сотни растительных продуктов, способных активировать AMPK[176], но многие из них токсичны – это спасает их от любителей перекусить. Возьмем, к примеру, никотин. Биопсия жировой ткани показывает, что по сравнению с некурящими людьми у тех, кто курит, активация AMPK происходит более чем в 5 раз быстрее[177]. Неудивительно, что курильщики часто набирают вес, когда бросают курить[178]. Никотиновая жевательная резинка может сгладить подобную реакцию[179]. Курение сигарет – это, возможно, одна из худших вещей, которыми вы можете навредить себе, но вместе с тем это один из самых надежных способов похудеть благодаря AMPK[180]. Есть ли способ получить пользу от AMPK без риска умереть страшной смертью от рака легких?
Барбарис
Поскольку активация AMPK приводит к снижению веса, в своей книге я рассказываю о ряде природных активаторов AMPK, в том числе о берберине, содержащемся в барбарисе. Вместо того чтобы повторять это здесь, позвольте мне отослать вас к разделу, посвященному барбарису, в книге «Не сдохни на диете».
Барбарис, который в сушеном виде продается по невысокой цене в магазинах Ближнего Востока, успешно снижает уровень холестерина ЛПНП[181], а также избавляет от акне[182], улучшает работу артерий[183], нормализует уровень триглицеридов, сахара в крови и борется с инсулинорезистентностью[184]. Той дозы берберина, которая, предположительно, стимулирует AMPK и широко используется в Китае для лечения диабета[185], можно достичь, употребляя всего две чайные ложки барбариса три раза в день или одну столовую ложку два раза в день[186]. Предпочтительнее употреблять весь продукт целиком, тем более что анализ представленных на рынке добавок с берберином показал, что 60 % из них не соответствуют заявленным на этикетке характеристикам[187].
Предостережение: не стоит употреблять барбарис во время беременности и грудного вскармливания[188].
Причина, по которой различные растения производят соединения, активирующие AMPK, может заключаться в механизме самосохранения. Возможно, производя соединения, нарушающие метаболизм травоядных животных, они пытаются защититься от них. Эти функции могут быть для нас благом, но для развивающегося плода и для младенцев оказаться вредны.
Цианид является еще одним активатором AMPK и может убивать, полностью блокируя производство энергии, в то время как такие соединения, как берберин и метформин, как полагают, просто нарушают функцию митохондрий, делая производство энергии менее эффективным[189].
Черный кумин
Черный кумин – еще одно растение, традиционно используемое в ближневосточной кухне, и оно тоже может стимулировать AMPK[190]. См. раздел о черном кумине в книге «Не сдохни на диете». Во множестве научных исследований, посвященных этой специи, было установлено, что ежедневное употребление черного кумина способствует снижению веса[191], значительно улучшает уровень холестерина, триглицеридов[192],артериального давления[193] и способствует контролю уровня сахара в крови[194]. Обычные дозы, используемые в исследованиях, составляют всего 1–2 г черного кумина в день, то есть примерно четверть чайной ложки[195]. Применение таких малых доз позволяет исследователям проводить рандомизированные двойные слепые плацебо-контролируемые исследования, помещая цельную специю в капсулы, вместо того чтобы извлекать из специи лишь некоторые компоненты.
Кумин также снижает уровень маркеров воспаления, таких как С-реактивный белок[196],и оказывает благоприятное воздействие на воспалительные заболевания, такие как астма[197], ревматоидный артрит[198], и распространенную причину гипотиреоза – тиреоидит Хашимото[199]. Черный кумин также, по-видимому, помогает избавиться от камней в почках[200] и облегчить симптомы менопаузы[201].
Чай из гибискуса и лимонной вербены
Еще одним средством, повышающим уровень AMPK, является гибискус[202]: чай из него обладает терпким клюквенным вкусом и ярко-красным цветом. Чай из гибискуса тысячелетиями употребляется во всем мире как вкусный горячий или холодный напиток и как старинное лекарственное средство[203]. В книге «Не сдохни!» я рассказывал о его полезных свойствах при артериальном давлении: в клинических испытаниях он работает так же хорошо, как гипотензивные препараты[204] или даже превосходит некоторые из них[205]. В книге «Не сдохни на диете» я описываю его роль в активации AMPK[206] и в улучшении уровня сахара в крови, холестерина ЛПНП[207], функции артерий[208]и в снижении веса[209] – в сочетании с другим травяным чаем (лимонной вербеной) или без него. Однако см. на с. 521 мое замечание о состоянии зубной эмали и кислых напитках.
Уксус
Гибискус[210] и черный кумин[211] активизируют AMPK так же, как берберин и метформин в барбарисе, – путем вмешательства в производство клеточной энергии. Можно ли активировать AMPK без вмешательства в работу митохондрий?
Алкоголь – еще один растительный продукт, активирующий AMPK, но механизм тут совершенно иной. Наш организм метаболизирует алкоголь до уксусной кислоты, но для этого необходимо затратить энергию[212]. AMPK активируется естественным образом в ответ на расход топлива[213]. Однако прежде чем алкоголь полностью превратится в уксусную кислоту, образуется токсичный промежуточный продукт – ацетальдегид, который является известным канцерогеном. Возможно, именно поэтому употребление алкоголя повышает риск развития по крайней мере полудюжины видов рака[214], включая рак молочной железы, даже среди тех, кто пьет мало[215]. Можно ли как-то миновать этот токсичный этап и получать уксусную кислоту напрямую?
Изучив роль AMPK в сжигании лишнего жира, исследователи пришли к выводу, что «крайне важно разработать пероральные соединения с высокой биодоступностью, позволяющие безопасно вызывать хроническую активацию AMPK… [для] долгосрочного снижения и поддержания веса»[216]. Но зачем разрабатывать такое соединение, если его уже можно купить в любом продуктовом магазине? Оно называется уксус.
На латыни уксус – acetum. Уксус – это просто разведенная водой уксусная кислота[217]. Когда мы употребляем уксус в том объеме, который мы обычно используем для заправки салата[218], уксусная кислота всасывается и метаболизируется, обеспечивая естественное повышение уровня AMPK.
В книге ««Не сдохни на диете» я рассказываю о том, как уксус может уменьшить количество висцерального и подкожного жира[219] и снизить уровень сахара в крови у диабетиков наравне с противодиабетическими препаратами[220] за счет улучшения усвоения сахара мышцами[221]. Этот эффект AMPK также наблюдается при физических нагрузках[222]. Удивительно, но уксус в сочетании с метформином лучше контролировал уровень сахара в крови, чем только метформин, что говорит либо о его вспомогательной роли для дальнейшей стимуляции AMPK (при этом доза метформина была относительно низкой), либо о пользе уксуса самого по себе, помимо AMPK[223].
Кроме того, было показано, что уксус улучшает работу артерий[224] и обладает другими преимуществами AMPK-активации, например снижает уровень холестерина и триглицеридов в крови[225]. Может ли он помочь вам жить дольше? Попадая в организм C. elegans, уксус заметно продлевает жизнь[226], но на людях это его свойство никогда не проверялось. Гарвардское исследование здоровья медсестер показало, что у женщин, употреблявших хотя бы одну столовую ложку салатной заправки с маслом и уксусом пять или более дней в неделю, смертельные сердечные приступы случались реже, чем у женщин, которые практически не употребляли заправку. Даже с учетом дополнительного употребления овощей риск смерти от главного убийцы женщин снизился на 54 %[227].
Продукты, богатые клетчаткой
Не нравится вкус уксуса? Вместо того чтобы доставлять уксусную кислоту через рот, ее можно поставлять в кровь и «в обратном направлении». Вы знаете, что овощи и злаки становятся кислыми после ферментации? Вспомните квашеную капусту. Это происходит потому, что в них живут хорошие бактерии, такие как Lactobacillus, которые вырабатывают органические кислоты, например молочную. Уксусная кислота – это тип короткоцепочечной жирной кислоты, вырабатываемой дружественной флорой в нашем кишечнике из клетчатки и резистентного крахмала, которые мы употребляем в пищу. Эти пребиотики содержатся в бобовых (фасоль, горох, нут, чечевица) и цельном зерне, но клетчатка встречается во всем растительном мире.
Когда мы едим цельную растительную пищу, наша кишечная флора, ферментируя клетчатку, создает уксусную кислоту «с нуля» в толстой кишке. Затем эта уксусная кислота реабсорбируется обратно в кровь. Таким образом, мы можем использовать нисходящий подход к активации AMPK, употребляя уксус, или восходящий подход, употребляя клетчатку[228].
О каком количестве клетчатки идет речь? Даже при употреблении минимально рекомендуемого количества клетчатки – около 30 г в день – в толстом кишечнике образуется более четырех столовых ложек уксуса[229], [230]. Часть его неизбежно выводится из организма, поэтому всасывается лишь около 40 % уксусной кислоты, образующейся в толстом кишечнике[231], но если мы едим достаточно полезных продуктов, это может оказать существенное влияние на состояние AMPK. Предполагается, что активация AMPK уксусной кислотой, вырабатываемой в толстом кишечнике, – это один из тех факторов, что делает эффективной диету с высоким содержанием клетчатки[232].
Исследовав копролиты человека[233] – окаменевшие фекалии, ученые установили, что наши древние предки могли потреблять более 100 г клетчатки в день[234]. Это более чем в 5 раз больше, чем употребляет средний американец сегодня[235]. Таким образом, в процессе эволюции мы стали активаторами AMPK не только потому, что часто были голодны и активны, но и потому, что наш кишечник ежедневно производил несколько ложек уксуса из всех растений, которые мы ели. И предваряя ваш вопрос: нет, вы не можете просто принимать добавки с клетчаткой, такие как псиллиум, потому что она не ферментируется, то есть кишечные бактерии не могут ее съесть. Поэтому хотя такие пищевые добавки способны отрегулировать работу кишечника, они не могут быть использованы для получения ключевых ингредиентов для активации AMPK[236].
Пища для размышлений
Открытие AMPK считается одним из важнейших прорывов в биомедицине за последние несколько десятилетий[237]. Поскольку этот фермент участвует в функционировании большинства регуляторов старения, включая аутофагию, о которой я расскажу далее, значение AMPK в мероприятиях по борьбе со старением трудно переоценить[238].
Препарат метформин активирует AMPK, но оказывает неблагоприятные побочные действия и может не принести пользы здоровым людям. AMPK – это датчик энергии, поэтому он активируется, когда мы меньше едим или больше двигаемся. Некоторые компоненты пищи, например насыщенные жиры, могут подавлять AMPK, в то время как другие, например клетчатка, могут его активизировать. Специфические соединения, активирующие AMPK, содержатся также в барбарисе, черном кумине, чае из гибискуса и уксусе.
Чтобы замедлить старение:
• снизьте потребление насыщенных жиров (содержащихся в мясе, молочных продуктах и десертах);
• увеличьте потребление клетчатки (в основном содержащейся в бобовых и цельном зерне);
• употребляйте каждый день:
• 2 чайные ложки барбариса;
• щепотку (1/12 чайной ложки) молотого черного кумина;
3/4 чашки[239] чая из гибискуса с добавлением 1/4 чашки чая из лимонной вербены;
• 2 чайные ложки уксуса (не прямо в рот! Добавляйте в пищу или разбавляйте в чае).
Ссылки на источники
176
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 2016;6(1):1–19. https://pubmed.ncbi.nlm.nih.gov/26904394/
177
Wu Y, Song P, Zhang W, et al. Activation of AMPKa2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat Med. 2015;21(4):373–82. https://pubmed.ncbi.nlm.nih.gov/25799226/
178
Martínez de Morentin PB, Whittle AJ, Fernø J, et al. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes. 2012;61(4):807–17. https://pubmed.ncbi.nlm.nih.gov/22315316/
179
Ferguson SG, Shiffman S, Rohay JM, Gitchell JG, Garvey AJ. Effect of compliance with nicotine gum dosing on weight gained during a quit attempt. Addiction. 2011;106(3):651–6. https://pubmed.ncbi.nlm.nih.gov/21182551/
180
Novak CM, Gavini CK. Smokeless weight loss. Diabetes. 2012;61(4):776–7. https://pubmed.ncbi.nlm.nih.gov/22442297/
181
Hadi A, Arab A, Ghaedi E, Rafie N, Miraghajani M, Kafeshani M. Barberry (Berberis vulgaris L.) is a safe approach for management of lipid parameters: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2019;43:117–24. https://pubmed.ncbi.nlm.nih.gov/30935518/
182
Fouladi RF. Aqueous extract of dried fruit of Berberis vulgaris L. in acne vulgaris, a clinical trial. J Diet Suppl. 2012;9(4):253–61. https://pubmed.ncbi.nlm.nih.gov/23038982/
183
Emamat H, Asadian S, Zahedmehr A, Ghanavati M, Nasrollahzadeh J. The effect of barberry (Berberis vulgaris) consumption on flow-mediated dilation and inflammatory biomarkers in patients with hypertension: a randomized controlled trial [published online ahead of print, 2020 Dec 22]. Phytother Res. 2020;10.1002/ptr.7000. https://pubmed.ncbi.nlm.nih.gov/33350540/
184
Shidfar F, Ebrahimi SS, Hosseini S, Heydari I, Shidfar S, Hajhassani G. The effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran J Pharm Res. 2012;11(2):643–52. https://pubmed.ncbi.nlm.nih.gov/24250489/
185
McCarty MF. AMPK activation – protean potential for boosting healthspan. Age (Dordr). 2014;36(2):641–63. https://pubmed.ncbi.nlm.nih.gov/24248330/
186
Shidfar F, Ebrahimi SS, Hosseini S, Heydari I, Shidfar S, Hajhassani G. The effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran J Pharm Res. 2012;11(2):643–52. https://pubmed.ncbi.nlm.nih.gov/24250489/
187
Funk RS, Singh RK, Winefield RD, et al. Variability in potency among commercial preparations of berberine. J Diet Suppl. 2018;15(3):343–51. https://pubmed.ncbi.nlm.nih.gov/28792254/
188
Arayne MS, Sultana N, Bahadur SS. The berberis story: Berberis vulgaris in therapeutics. Pak J Pharm Sci. 2007;20(1):83–92. https://pubmed.ncbi.nlm.nih.gov/17337435/
189
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 2016;6(1):1–19. https://pubmed.ncbi.nlm.nih.gov/26904394/
190
Tavakoli-Rouzbehani OM, Maleki V, Shadnoush M, Taheri E, Alizadeh M. A comprehensive insight into potential roles of Nigella sativa on diseases by targeting AMP-activated protein kinase: a review. Daru. 2020;28(2):779–87. https://pubmed.ncbi.nlm.nih.gov/33140312/
191
Mousavi SM, Sheikhi A, Varkaneh HK, Zarezadeh M, Rahmani J, Milajerdi A. Effect of Nigella sativa supplementation on obesity indices: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2018;38:48–57. https://pubmed.ncbi.nlm.nih.gov/29857879/
192
Sahebkar A, Beccuti G, Simental-Mendía LE, Nobili V, Bo S. Nigella sativa (black seed) effects on plasma lipid concentrations in humans: a systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol Res. 2016;106:37–50. https://pubmed.ncbi.nlm.nih.gov/26875640/
193
Sahebkar A, Soranna D, Liu X, et al. A systematic review and meta-analysis of randomized controlled trials investigating the effects of supplementation with Nigella sativa (black seed) on blood pressure. J Hypertens. 2016;34(11):2127–35. https://pubmed.ncbi.nlm.nih.gov/27512971/
194
Daryabeygi-Khotbehsara R, Golzarand M, Ghaffari MP, Djafarian K. Nigella sativa improves glucose homeostasis and serum lipids in type 2 diabetes: a systematic review and meta-analysis. Complement Ther Med. 2017;35:6–13. https://pubmed.ncbi.nlm.nih.gov/29154069/
195
Agricultural Research Service, United States Department of Agriculture. Sweet sunnah, whole black seeds nigella sativa. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/468991/nutrients. Published April 1, 2019. Accessed May 8, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/468991/nutrients
196
Montazeri RS, Fatahi S, Sohouli MH, et al. The effect of nigella sativa on biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomized controlled trials. J Food Biochem. 2021;45(4):e13625. https://pubmed.ncbi.nlm.nih.gov/33559935/
197
He T, Xu X. The influence of Nigella sativa for asthma control: a meta-analysis. Am J Emerg Med. 2020;38(3):589–93. https://pubmed.ncbi.nlm.nih.gov/31892440/
198
Khabbazi A, Javadivala Z, Seyedsadjadi N, Malek Mahdavi A. A systematic review of the potential effects of Nigella sativa on rheumatoid arthritis. Planta Med. 2020;86(7):457–69. https://pubmed.ncbi.nlm.nih.gov/32274788/
199
Tajmiri S, Abbasalizad Farhangi M, Dehghan P. Nigella Sativa treatment and serum concentrations of thyroid hormones, transforming growth factor ß (TGF-ß) and interleukin 23 (IL-23) in patients with Hashimoto’s thyroiditis. Eur J Integr Med. 2016;8(4):576–80. https://www.sciencedirect.com/science/article/abs/pii/S1876382016300208
200
Ardakani Movaghati MR, Yousefi M, Saghebi SA, Sadeghi Vazin M, Iraji A, Mosavat SH. Efficacy of black seed (Nigella sativa L.) on kidney stone dissolution: a randomized, double-blind, placebo-controlled, clinical trial. Phytother Res. 2019;33(5):1404–12. https://pubmed.ncbi.nlm.nih.gov/30873671/
201
Latiff LA, Parhizkar S, Dollah MA, Hassan ST. Alternative supplement for enhancement of reproductive health and metabolic profile among perimenopausal women: a novel role of Nigella sativa. Iran J Basic Med Sci. 2014;17(12):980–5. https://pubmed.ncbi.nlm.nih.gov/25859301/
202
Lingesh A, Paul D, Naidu V, Satheeshkumar N. AMPK activating and anti adipogenic potential of Hibiscus rosa sinensis flower in 3T3-L1 cells. J Ethnopharmacol. 2019;233:123–30. https://pubmed.ncbi.nlm.nih.gov/30593890/
203
Amos A, Khiatah B. Mechanisms of action of nutritionally rich Hibiscus sabdariffa’s therapeutic uses in major common chronic diseases: a literature review [published online ahead of print, 2021 Jan 28]. J Am Coll Nutr. 2021;1–8. https://pubmed.ncbi.nlm.nih.gov/33507846/
204
Soleimani AR, Akbari H, Soleimani S, Beladi Mousavi SS, Tamadon MR. Effect of sour tea (Lipicom) pill versus captopril on the treatment of hypertension. J Renal Inj Prev. 2015;4(3):73–9. https://pubmed.ncbi.nlm.nih.gov/26468478/
205
Nwachukwu DC, Aneke EI, Nwachukwu NZ, Azubike N, Obika LF. Does consumption of an aqueous extract of Hibscus sabdariffa affect renal function in subjects with mild to moderate hypertension? J Physiol Sci. 2017;67(1):227–34. https://pubmed.ncbi.nlm.nih.gov/27221151/
206
Hopkins AL, Lamm MG, Funk JL, Ritenbaugh C. Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: a comprehensive review of animal and human studies. Fitoterapia. 2013;85:84–94. https://pubmed.ncbi.nlm.nih.gov/23333908/
207
Bule M, Albelbeisi AH, Nikfar S, Amini M, Abdollahi M. The antidiabetic and antilipidemic effects of Hibiscus sabdariffa: a systematic review and meta-analysis of randomized clinical trials. Food Res Int (Ottawa). 2020;130:108980. https://pubmed.ncbi.nlm.nih.gov/32156406/
208
Abubakar SM, Ukeyima MT, Spencer JPE, Lovegrove JA. Acute effects of Hibiscus sabdariffa calyces on postprandial blood pressure, vascular function, blood lipids, biomarkers of insulin resistance and inflammation in humans. Nutrients. 2019;11(2):341. https://pubmed.ncbi.nlm.nih.gov/30764582/
209
Chang HC, Peng CH, Yeh DM, Kao ES, Wang CJ. Hibiscus sabdariffa extract inhibits obesity and fat accumulation, and improves liver steatosis in humans. Food Funct. 2014;5(4):734–9. https://pubmed.ncbi.nlm.nih.gov/24549255/
210
Wu CH, Huang CC, Hung CH, Yao FY, Wang CJ, Chang YC. Delphinidin-rich extracts of Hibiscus sabdariffa L. trigger mitochondria-derived autophagy and necrosis through reactive oxygen species in human breast cancer cells. J Funct Foods. 2016;25:279–90. https://www.sciencedirect.com/science/article/abs/pii/S175646461630144X?via%3Dihub
211
Salim LZA, Mohan S, Othman R, et al. Thymoquinone induces mitochondria-mediated apoptosis in acute lymphoblastic leukaemia in vitro. Molecules. 2013;18(9):11219–40. https://pubmed.ncbi.nlm.nih.gov/24036512/
212
Chen H, Chen T, Giudici P, Chen F. Vinegar functions on health: constituents, sources, and formation mechanisms. Compr Rev Food Sci Food Saf. 2016;15(6):1124–38. https://pubmed.ncbi.nlm.nih.gov/33401833/
213
Ali Z, Wang Z, Amir RM, et al. Potential uses of vinegar as a medicine and related in vivo mechanisms. Int J Vitam Nutr Res. 2018;86(3–4):1–12. https://pubmed.ncbi.nlm.nih.gov/29580192/
214
Bagnardi V, Rota M, Botteri E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2015;112(3):580–93. https://pubmed.ncbi.nlm.nih.gov/25422909/
215
Shield KD, Soerjomataram I, Rehm J. Alcohol use and breast cancer: a critical review. Alcohol Clin Exp Res. 2016;40(6):1166–81. https://pubmed.ncbi.nlm.nih.gov/27130687/
216
Ceddia RB. The role of AMP-activated protein kinase in regulating white adipose tissue metabolism. Mol Cell Endocrinol. 2013;366(2):194–203. https://pubmed.ncbi.nlm.nih.gov/22750051/
217
Center for Food Safety and Applied Nutrition, Office of Regulatory Affairs. CPG sec. 525.825 vinegar, definitions – adulteration with vinegar eels. United States Food and Drug Administration. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-525825-vinegar-definitions-adulteration-vinegar-eels. Published March 1995. Accessed May 8, 2021.; https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-525825-vinegar-definitions-adulteration-vinegar-eels
218
Park J, Kim J, Kim J, et al. Pomegranate vinegar beverage reduces visceral fat accumulation in association with AMPK activation in overweight women: a double-blind, randomized, and placebo-controlled trial. J Funct Foods. 2014;8:274–81. https://www.sciencedirect.com/science/article/abs/pii/S1756464614001273
219
Kondo T, Kishi M, Fushimi T, Ugajin S, Kaga T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci Biotechnol Biochem. 2009;73(8):1837–43. https://pubmed.ncbi.nlm.nih.gov/19661687/
220
Johnston C, Quagliano S, White S. Vinegar ingestion at mealtime reduced fasting blood glucose concentrations in healthy adults at risk for type 2 diabetes. J Funct Foods. 2013;5(4):2007–11. https://www.sciencedirect.com/science/article/abs/pii/S1756464613001874
221
Mitrou P, Petsiou E, Papakonstantinou E, et al. Vinegar consumption increases insulin-stimulated glucose uptake by the forearm muscle in humans with type 2 diabetes. J Diabetes Res. 2015;2015:175204. https://pubmed.ncbi.nlm.nih.gov/26064976/
222
Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses. 2010;74(1):123–6. https://pubmed.ncbi.nlm.nih.gov/19665312/
223
Abid M, Memon Z, Shaheen S, Ahmed F, Shaikh MZ, Agha F. Comparison of apple cider vinegar and metformin combination with metformin alone in newly diagnosed type 2 diabetic patients: a randomized controlled trial. Int J Med Res Health Sci. 2020;9(2):1–7. https://www.ijmrhs.com/abstract/comparison-of-apple-cider-vinegar-and-metformin-combination-with-metformin-alone-in-newly-diagnosed-type-2-diabetic-pati-44684.html
224
Sakakibara S, Murakami R, Takahashi M, et al. Vinegar intake enhances flow-mediated vasodilatation via upregulation of endothelial nitric oxide synthase activity. Biosci Biotechnol Biochem. 2010;74(5):1055–61. https://pubmed.ncbi.nlm.nih.gov/20460711/
225
Beheshti Z, Chan YH, Nia HS, et al. Influence of apple cider vinegar on blood lipids. Life Sci J. 2012;9(4):2431–40. https://www.lifesciencesite.com/lsj/life0904/360_10755life0904_2431_2440.pdf
226
Chuang MH, Chiou SH, Huang CH, Yang WB, Wong CH. The lifespan-promoting effect of acetic acid and Reishi polysaccharide. Bioorg Med Chem. 2009;17(22):7831–40. https://pubmed.ncbi.nlm.nih.gov/19837596/
227
Hu FB, Stampfer MJ, Manson JE, et al. Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women. Am J Clin Nutr. 1999;69(5):890–7. https://pubmed.ncbi.nlm.nih.gov/10232627/
228
Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses. 2010;74(1):123–6. https://pubmed.ncbi.nlm.nih.gov/19665312/
229
Koç F, Mills S, Strain C, Ross RP, Stanton C. The public health rationale for increasing dietary fibre: health benefits with a focus on gut microbiota. Nutr Bull. 2020;45:294–308. https://onlinelibrary.wiley.com/doi/10.1111/nbu.12448
230
Pritchard SE, Marciani L, Garsed KC, et al. Fasting and postprandial volumes of the undisturbed colon: normal values and changes in diarrhea-predominant irritable bowel syndrome measured using serial MRI. Neurogastroenterol Motil. 2014;26(1):124–30. https://pubmed.ncbi.nlm.nih.gov/24131490/
231
Tang R, Li L. Modulation of short-chain fatty acids as potential therapy method for type 2 diabetes mellitus. Can J Infect Dis Med Microbiol. 2021;2021:6632266. https://pubmed.ncbi.nlm.nih.gov/33488888/
232
Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses. 2010;74(1):123–6. https://pubmed.ncbi.nlm.nih.gov/19665312/
233
Spiller G, ed. Topics in Dietary Fiber Research. Plenum Press; 1978. https://link.springer.com/book/10.1007/978-1-4684-2481-2
234
Eaton SB, Eaton SB, Konner MJ. Paleolithic nutrition revisited: a twelve-year retrospective on its nature and implications. Eur J Clin Nutr. 1997;51(4):207–16. https://pubmed.ncbi.nlm.nih.gov/9104571/
235
Usual nutrient intake from food and beverages, by gender and age: what we eat in America, NHANES 2015–2018. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/usual/Usual_Intake_gender_WWEIA_2015_2018.pdf. Published January 2021. Accessed December 25, 2022.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/usual/Usual_Intake_gender_WWEIA_2015_2018.pdf
236
McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: what to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):82–9. https://pubmed.ncbi.nlm.nih.gov/25972618/
237
López M. Hypothalamic AMPK: a golden target against obesity? Eur J Endocrinol. 2017;176(5):R235–46. https://pubmed.ncbi.nlm.nih.gov/28232370/
238
Morgunova GV, Klebanov AA. Age-related AMP-activated protein kinase alterations: from cellular energetics to longevity. Cell Biochem Funct. 2019;37(3):169–76. https://pubmed.ncbi.nlm.nih.gov/30895648/
239
Американская единица объема «чашка» (cup) равна 240 мл. – Примеч. ред.