Читать книгу Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер - Страница 66

Часть I
Одиннадцать способов замедления старения
Окисление
Свободные радикалы ускоряют старение

Оглавление

Наша немитохондриальная ДНК находится внутри клеточного ядра, вне контакта с митохондриями, но она все равно подвергается постоянному воздействию свободных радикалов. Каждый день наш геном подвергается примерно 70 000 ударам, которые проявляются в основном в виде однонитевых разрывов в двойной спирали ДНК. Хорошо, что у нас есть целый ряд механизмов репарации ДНК (за открытие которых в 2015 году была присуждена Нобелевская премия), способных устранить разрыв до того, как клетка начнет делиться и передаст повреждение ДНК в виде мутации[1521]. Но плохо, что с возрастом способность к репарации ДНК снижается[1522], что может объяснить накопление повреждений ДНК, наблюдаемое у пожилых людей[1523] (хотя у столетних долгожителей, как правило, окислительные повреждения относительно меньше)[1524]. Почему мы считаем, что это не следствие старения, а его причина? Наиболее убедительным доказательством является то, что большинство редких генетических синдромов преждевременного старения обусловлены мутациями генов репарации ДНК[1525]. Проводятся также параллели с отложенными последствиями лечения рака.

Лучевая терапия и генотоксическая химиотерапия действуют путем целенаправленного повреждения свободными радикалами ДНК для уничтожения быстро делящихся раковых клеток. При этом поражаются все клетки, подвергшиеся облучению, а не только раковые. Если повреждение ДНК является движущей силой старения, то можно ожидать, что люди, пережившие рак, будут преждевременно страдать от возрастной инвалидности, и это действительно так: такие заболевания, как артрит, возникают у исцелившихся от рака на десятилетия раньше, чем ожидалось. Двадцать процентов людей, имевших онкологические заболевания в детстве, к 50 годам переносят инфаркт или инсульт, в то время как среди их братьев и сестер к этому возрасту этот показатель составляет всего 1 %. Десять процентов пожилых людей в возрасте 65 лет и старше страдают от потери выносливости и силы. Столько же человек, переживших рак в детстве, испытывают общую слабость уже в 30-летнем возрасте. Независимо от того, возникает ли это в результате врожденного дефицита репарации ДНК или в результате воздействия генотоксических агентов, последствия избыточного повреждения ДНК, по-видимому, одни и те же: ускоренное старение[1526].

Окислительный стресс причастен к поседению волос[1527], развитию катаракты, артрита, хрупкости костей, нейродегенеративных, сердечно-сосудистых, почечных и легочных заболеваний[1528], снижению когнитивных способностей, возрастной макулярной дегенерации[1529] и потере мышечной массы[1530]. Ослабление антиоксидантной защиты у мышей приводит к ускоренному снижению слуха, образованию катаракты и дисфункции сердца, в то время как повышение антиоксидантного потенциала оказывает обратное действие[1531] – задерживает развитие возрастных заболеваний[1532]. Таким образом, для увеличения продолжительности жизни может потребоваться подавление образования свободных радикалов или усиление антиоксидантной защиты, которая будет подавлять возникающий оксидантный стресс.

1521

Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–56. https://pubmed.ncbi.nlm.nih.gov/28187286/

1522

Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–34. https://pubmed.ncbi.nlm.nih.gov/33146705/

1523

Soares JP, Cortinhas A, Bento T, et al. Aging and DNA damage in humans: a meta-analysis study. Aging (Albany NY). 2014;6(6):432–9. https://pubmed.ncbi.nlm.nih.gov/25140379/

1524

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

1525

Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–34. https://pubmed.ncbi.nlm.nih.gov/33146705/

1526

Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. DNA damage – how and why we age? Elife. 2021;10:e62852. https://pubmed.ncbi.nlm.nih.gov/33512317/

1527

Liochev SI. Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal. 2015;23(3):187–207. https://pubmed.ncbi.nlm.nih.gov/24949668/

1528

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

1529

Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. https://pubmed.ncbi.nlm.nih.gov/29731617/

1530

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

1531

Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med. 2010;48(5):642–55. https://pubmed.ncbi.nlm.nih.gov/20036736/

1532

Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med. 2014;71:368–78. https://pubmed.ncbi.nlm.nih.gov/24704971/

Живи долго! Научный подход к долгой молодости и здоровью

Подняться наверх