Жанры
Авторы
Контакты
О сайте
Книжные новинки
Популярные книги
Найти
Главная
Авторы
Michael Barton Graham
Wind Energy Handbook
Читать книгу Wind Energy Handbook - Michael Barton Graham - Страница 1
Оглавление
Предыдущая
Следующая
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
138
Оглавление
Купить и скачать книгу
Вернуться на страницу книги Wind Energy Handbook
Оглавление
Страница 1
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Wind Energy Handbook
Страница 8
About the Authors
Preface to Second Edition
Preface to Third Edition
Acknowledgements for the First Edition
Acknowledgements for the Second Edition
Acknowledgements for the Third Edition
List of Symbols
Greek
Subscripts
Superscripts
Figures C1 and C2 – coordinate systems
1
Introduction 1.1 Historical development of wind energy
1.2 Modern wind turbines
1.3 Scope of the book
References
Websites
Further Reading
Страница 26
2.1 The nature of the wind
2.2 Geographical variation in the wind resource
2.3 Long‐term wind speed variations
2.4 Annual and seasonal variations
2.5 Synoptic and diurnal variations
2.6 Turbulence 2.6.1 The nature of turbulence
2.6.2 The boundary layer
2.6.3 Turbulence intensity
2.6.4 Turbulence spectra
2.6.5 Length scales and other parameters
2.6.6 Asymptotic limits
2.6.7 Cross‐spectra and coherence functions
2.6.8 The Mann model of turbulence
2.7 Gust wind speeds
2.8 Extreme wind speeds
2.8.1 Extreme winds in standards
2.9 Wind speed prediction and forecasting
2.9.1 Statistical methods
2.9.2 Meteorological methods
2.9.3 Current methods
2.10 Turbulence in complex terrain
References
3
Aerodynamics of horizontal axis wind turbines Author's note on aerodynamics
3.1 Introduction
3.2 The actuator disc concept
3.2.1 Simple momentum theory
3.2.2 Power coefficient
3.2.3 The Betz limit
3.2.4 The thrust coefficient
3.3 Rotor disc theory
3.3.1 Wake rotation
3.3.2 Angular momentum theory
3.3.3 Maximum power
3.4 Vortex cylinder model of the actuator disc 3.4.1 Introduction
3.4.2 Vortex cylinder theory
3.4.3 Relationship between bound circulation and the induced velocity
3.4.4 Root vortex
3.4.5 Torque and power
3.4.6 Axial flow field
3.4.7 Tangential flow field
3.4.8 Axial thrust
3.4.9 Radial flow and the general flow field
3.4.10 Further development of the actuator model
3.4.11 Conclusions
3.5 Rotor blade theory (blade‐element/momentum theory) 3.5.1 Introduction
3.5.2 Blade element theory
3.5.3 The BEM theory
3.5.4 Determination of rotor torque and power
3.6 Actuator line theory, including radial variation
3.7 Breakdown of the momentum theory 3.7.1 Free‐stream/wake mixing
3.7.2 Modification of rotor thrust caused by wake breakdown
3.7.3 Empirical determination of thrust coefficient
3.8 Blade geometry 3.8.1 Introduction
3.8.2 Optimal design for variable‐speed operation
3.8.3 A simple blade design
3.8.4 Effects of drag on optimal blade design
3.8.5 Optimal blade design for constant‐speed operation
3.9 The effects of a discrete number of blades 3.9.1 Introduction
3.9.2 Tip‐losses
3.9.3 Prandtl's approximation for the tip‐loss factor
3.9.4 Blade root losses
3.9.5 Effect of tip‐loss on optimum blade design and power
3.9.6 Incorporation of tip‐loss for non‐optimal operation
3.9.7 Radial effects and an alternative explanation for tip‐loss
3.10 Stall delay
3.11 Calculated results for an actual turbine
3.12 The performance curves 3.12.1 Introduction
3.12.2 The
C
P
–
λ
performance curve
3.12.3 The effect of solidity on performance
3.12.4 The
C
Q
–
λ
curve
3.12.5 The
C
T
–
λ
curve
3.13 Constant rotational speed operation 3.13.1 Introduction
3.13.2 The
K
P
−1/λ
curve
3.13.3 Stall regulation
3.13.4 Effect of rotational speed change
3.13.5 Effect of blade pitch angle change
3.14 Pitch regulation 3.14.1 Introduction
3.14.2 Pitching to stall
3.14.3 Pitching to feather
3.15 Comparison of measured with theoretical performance
3.16 Estimation of energy capture
3.17 Wind turbine aerofoil design 3.17.1 Introduction
3.17.2 The NREL aerofoils
3.17.3 The Risø aerofoils
3.17.4 The Delft aerofoils
3.17.5 General principles for outboard and inboard blade sections
3.18 Add‐ons (including blade modifications independent of the main structure)
3.18.1 Devices to control separation and stalling
3.18.2 Devices to increase C
Lmax
and lift/drag ratio
3.18.3 Circulation control (jet flaps)
3.19 Aerodynamic noise 3.19.1 Noise sources
3.19.2 Inflow turbulence‐induced blade noise
3.19.3 Self‐induced blade noise
3.19.4 Interaction between turbulent boundary layers on the blade and the trailing edge
3.19.5 Other blade noise sources
3.19.6 Summary
References
Websites
Further Reading
Appendix A3 Lift and drag of aerofoils
A3.1 Drag
A3.2 The boundary layer
A3.3 Boundary layer separation
A3.4 Laminar and turbulent boundary layers and transition
A3.5 Definition of lift and its relationship to circulation
A3.6 The stalled aerofoil
A3.7 The lift coefficient
A3.8 Aerofoil drag characteristics
A3.8.1 Symmetric aerofoils
A3.8.2 Cambered aerofoils
Note
{buyButton}
Подняться наверх