Читать книгу Ingeniería de la energía eólica - Miguel Villarubia López - Страница 8
CAPÍTULO 1 Aspectos generales
Оглавление1.1. Introducción
Actualmente, la energía eólica ha demostrado su viabilidad técnica y económica, siendo una tecnología madura. Varias razones hacen de la eólica una de las energías renovables con gran desarrollo en los últimos años. Entre ellas cabe citar:
La necesidad de fuentes alternativas a los combustibles, para reducir el uso de recursos no renovables por la gran demanda energética debido al aumento de la población y del consumo de energía per cápita. La tabla 1.1 muestra el consumo de energía primaria per cápita para diversas regiones.
Población mundial a finales de la década del 2000: 6.670 millones Nota: 1 tep = tonelada equivalente de petróleoTabla 1.1. Consumo anual per cápita de energía primaria (tep/persona y año).
La diversificación de suministros energéticos y el aumento del grado de autoabastecimiento energético para mayor independencia energética.
La reducción del impacto ambiental por disminución de la emisión de gases (efecto invernadero, acidificación de la atmósfera, destrucción de la capa de ozono, etc.) y la reducción de residuos sólidos y líquidos.
Las principales ventajas de la energía eólica son las siguientes:
No emite gases contaminantes, ni efluentes líquidos, ni residuos sólidos. Tampoco utiliza agua.
Reduce emisiones de CO2. En España, en 2009, la producción eólica fue de 36.188 GWh, lo que se tradujo en un ahorro de emisiones de 16,6 millones de toneladas de CO2, (considerando una emisión específica de CO2 asociada a la producción de electricidad de 460 toneladas de CO2 por GWh eléctrico).
No requiere minería de extracción subterránea o a cielo abierto.
Su uso y los posibles incidentes durante su explotación no implican riesgos ambientales de gran impacto (derrames, explosiones, incendios, etc.).
Ahorra combustibles, diversifica el suministro y reduce la dependencia energética.
Tiene un período de recuperación energética pequeño. Se requiere solo unos pocos meses de funcionamiento para recuperar la energía empleada en la construcción y montaje de un gran aerogenerador eólico.
Los principales problemas asociados a la energía eólica son:
El viento es aleatorio y variable, tanto en velocidad como en dirección, por lo que no todos los lugares son adecuados para la explotación técnica y económicamente viable de la energía eólica.
La producción eólica forma parte de un “mix” de generación, junto con otras fuentes de energía (hidráulica, térmica, nuclear...). Dada su variabilidad deben realizarse previsiones de producción a muy corto plazo (24 y 48 horas) para una adecuada gestión de la cadena de generación, transporte y distribución de electricidad. Su aleatoriedad y variabilidad requiere una mayor presencia de potencia rodante y una gestión específica para su integración en la red.
Su impacto ambiental es muy reducido y solo a escala muy local:
Aumento del nivel de ruido en sus proximidades.
Impacto visual o paisajístico.
Impacto sobre la fauna, en particular sobre las aves.
Ocupación del suelo: los aerogeneradores deben mantener una distancia entre sí que minimice los efectos de interferencia y de estela. Se recomienda una distancia entre torres de 3 a 5 veces el diámetro del rotor en la dirección perpendicular al viento dominante y de 5 a 10 veces en la dirección del viento dominante. Para parques con aerogeneradores entre 1 y 3 MW, la ocupación de terreno es de 3 a 6 ha/MW, aunque menos de un 5% queda afectado por la servidumbre de uso, pudiendo utilizarse el resto para fines agrícolas o agropecuarios.
Interferencias con transmisiones electromagnéticas: el rotor puede producir interferencias con campos electromagnéticos (televisión, radio, etc.).
1.2. Tipos de aerogeneradores eólicos
Su clasificación puede obedecer a distintos criterios:
a) Según la disposición del eje de giro:
Eje horizontal: la casi totalidad de las turbinas eólicas son de este tipo.
Eje vertical: las aplicaciones prácticas son muy escasas.
b) Según el número de palas:
Monopalas y bipalas: existe un número pequeño de estos tipos.
Tripala: la mayoría de turbinas dedicadas a la producción eléctrica.
Multipala: con un número variable de 16 a 24, utilizadas para bombeo de agua.
c) Según la velocidad del rotor de la turbina eólica:
Velocidad constante.
Velocidad variable.
Velocidad semivariable.
Dos velocidades.
d) Según su control y regulación:
Control por pérdida aerodinámica (stall control) o de palas de paso fijo.
Control por pérdida activa aerodinámica (active stall control).
Control por variación del ángulo del paso de pala (pitch control).
e) Según el generador eléctrico:
Generador asíncrono con rotor en jaula de ardilla.
Generador asíncrono con rotor bobinado doblemente alimentado.
Generador síncrono multipolo.
f) Según su emplazamiento:
Aerogeneradores para emplazamientos terrestres (Onshore).
Aerogeneradores para emplazamientos marinos (Offshore).
g) Según el tipo de viento:
Aerogeneradores para viento clase I, clase II o clase III.
h) Respecto a su interconexión con la red eléctrica:
Sistemas eólicos aislados (“en isla”), sin o con energía auxiliar (“híbridos”).
Sistemas eólicos interconectados con la red eléctrica.
i) Según su potencia nominal:
Microturbinas eólicas (< 5 kW).
Miniturbinas eólicas (5 – 100 kW).
Turbinas de media y gran potencia (100 a 1.000 kW).
Turbinas multimegavat (1.000 a 5.000 kW).
Un parámetro empleado para diferenciar los distintos tipos de turbinas eólicas, es la relación entre la velocidad lineal del extremo de la pala y la velocidad nominal del viento. Esta relación se conoce como velocidad específica de la turbina (tip speed ratio) y se designa por λ (lambda).
La velocidad nominal del viento es aquella para la cual la turbina alcanza su potencia nominal. Generalmente está comprendida entre 11 y 15 m/s (40 – 54 km/h).
Para valores de λ inferiores o del orden de la unidad, la máquina presenta un par de arranque grande y tiene muchas palas. Corresponde a turbinas destinadas al bombeo de agua y que a veces se denominan máquinas lentas. En cambio, para valores elevados de λ, la turbina tiene menos palas (bipala o tripala), presenta un par de arranque menor y la velocidad del extremo de la pala es mayor. En grandes aerogeneradores λ se sitúa en el intervalo de 5 a 8, la velocidad de giro alrededor de 10 a 20 rpm y la velocidad lineal en el extremo de la pala entre 60 y 90 m/s.
1.3. Sistemas de producción eoloeléctrica
Se distinguen dos sistemas básicos de producción eoloeléctrica:
a) Sistema aislado (en isla)
Usa pequeños aerogeneradores (< 100 kW) y sirve para atender la demanda de energía eléctrica de núcleos aislados. Al no estar interconectado con la red eléctrica, se debe prever un sistema auxiliar de almacenamiento (baterías eléctricas) para los períodos de calma o baja intensidad de viento. En muchas ocasiones, el sistema se apoya con fuentes de producción eléctrica auxiliar (grupos electrógenos o sistemas fotovoltaicos) formando un sistema denominado “híbrido”.
El generador eléctrico acostumbra a ser síncrono de imanes permanentes y está accionado directamente por la turbina eólica sin caja multiplicadora de velocidad (gear box) entre el eje del rotor de la turbina y el generador eléctrico o bien asíncrono con rotor en jaula dotado de una batería de condensadores para suministro de energía reactiva al generador. La electricidad producida en forma de corriente alterna de frecuencia variable se rectifica y almacena en baterías para posteriormente ser convertida de nuevo de corriente continua a alterna a frecuencia constante (50 o 60 Hz) mediante un ondulador o inversor. Finalmente, un transformador eleva la tensión a la requerida por el servicio (230/400 V).
En general, los microgeneradores para la producción individual de energía eléctrica, tienen potencias entre 1 y 5 kW, con diámetros entre 2 y 5 m. Debido a la economía de escala, el coste unitario de la potencia instalada es mucho mayor para un minigenerador que para un parque eólico, del orden de unas cinco a diez veces.
También se utilizan sistemas aislados con pequeñas turbinas multipala para producir energía mecánica directa para el bombeo de agua de pozos. Las eólicas multipalas (“windmill”) presentan una curva característica par – velocidad adecuada para el accionamiento directo de bombas hidráulicas para la extracción de agua de pozos.
b) Parque eólico
Un parque eólico actúa como una central eléctrica. En general formado por aerogeneradores de gran capacidad nominal, entre 600 kW a 3.000 kW, en un número que varía entre 10 y 100, resultando parques entre 10 y 100 MW. Se distinguen dos tipos de parques: terrestres (onshore) y marinos (offshore).
Los aerogeneradores son de eje horizontal y principalmente tripala a barlovento, con sistema de orientación activa y torre tubular. Domina la regulación activa por paso variable (pitch) frente a la de paso fijo por pérdida aerodinámica (stall).
En los últimos años ha aumentado el uso de rotores de velocidad variable, frente a los de velocidad fija o semivariable, así como el uso de generadores asíncronos con rotor doblemente alimentado e incluso generadores síncronos multipolos frente a los generadores asíncronos de rotor en jaula.
Debido a la plataforma marina y a la interconexión eléctrica con la costa, un parque offshore tiene un coste unitario de inversión del orden de dos veces mayor que un onshore. En cambio, su producción es mejor, por ser el viento más regular. Se espera un gran desarrollo de este tipo de parques marinos en un futuro próximo.
1.4. Estado de la implantación de la energía eólica
En la actualidad, la mayoría de aerogeneradores instalados en parques eólicos son máquinas de gran tamaño cuyas características generales se resumen en la tabla 1.2.
Tabla 1.2. Características generales de grandes aerogeneradores.
La capacidad nominal mundial acumulada en 2008 alcanzó 120,8 GW, de la cual, los diez países indicados en la tabla 1.3, poseían el 86% del total.
Tabla 1.3. Capacidad nominal instalada acumulada por países (MW) en 2008
La energía eólica ha experimentado un gran crecimiento. La figura 1.1 muestra esa evolución desde 1993 (2.9 GW) hasta 2008 (120.8 GW).
Figura 1.1. Potencia eólica mundial instalada acumulada, en MW.
Para un conjunto de veinte países miembros de la IEA Wind, con una potencia total instalada acumulada en 2007 de 74,8 GW, los datos más significativos se muestran en la tabla 1.4
Capacidad total acumulada (MW) | 74.844 |
Capacidad offshore (MW) | 1.125 |
Nº de aerogeneradores (aprox) | 55.000 |
Potencia media de nuevas turbinas (kW) | 1.773 |
Energía eléctrica producida (TWh) | 155 |
Horas equivalentes anuales a plena carga | 2.070 |
Factor de carga (%) | 24 |
Tabla 1.4. Datos eoloeléctricos para un conjunto de veinte países de la IEA Wind (2007). |
En España la evolución de la capacidad eólica instalada se muestra en la figura 1.2.
Figura 1.2. Evolución de la capacidad eólica instalada en España.
La capacidad nominal unitaria de las turbinas eólicas ha ido creciendo progresivamente. En 1995, la potencia media por turbina era de 350 kW y en 2007 la capacidad unitaria aumentó hasta 1.770 kW en promedio. La figura 1.3, muestra la evolución de la capacidad media unitaria de las turbinas instaladas.
Se espera en el futuro próximo el aumento de instalación de turbinas de 3 a 5 MW. Actualmente se considera una capacidad de 5 a 6 MW como el límite superior técnicamente viable.
Figura 1.3. Potencia media (kW) de turbinas instaladas en países miembros de la IEA Wind en el período 1995-2007.
1.5. La evolución de la energía eólica en el pasado y situación actual
a) Evolución en el pasado próximo
La energía eólica se ha utilizado desde tiempos pasados como energía mecánica para molinos y bombeo de agua. La figura 1.4 muestra el típico molino holandés (a) y el aerogenerador multipala americano (windmill) utilizado para bombeo de agua (b).
Figura 1.4. Molino holandés (a) y generador multipala (windmill) para bombeo de agua.
A partir de 1980 progresa la tecnología eólica. En su inicio, las turbinas tenían potencias de 20 a 50 kW, eran pesadas, ruidosas, con baja disponibilidad, difícil regulación y con un gran coste unitario de inversión, alrededor de 3.000€/kW instalado.
Un cuarto de siglo más tarde, la potencia se sitúa entre 1,5 y 3 MW por aerogenerador, son mucho más ligeros, más disponibles, presentan un buen control de la regulación y su coste unitario de inversión se sitúa entre 900 a 1.300€/kW instalado, según el tipo y tamaño de la máquina y de las características del parque eólico. En la figura 1.5 se muestra un parque eólico con turbinas de gran potencia.
En el desarrollo de la energía eólica se distinguen las siguientes etapas:
Etapa de inicio: corresponde a las décadas de 1970 y 1980. Durante la segunda se consolida el modelo tripala, básicamente de velocidad constante, regulación por pérdida aerodinámica (stall), con generador eléctrico asíncrono con rotor en jaula de ardilla y con una capacidad nominal unitaria no mayor de unos 300 kW. Este período histórico está dominado por el llamado “modelo danés”.
Etapa de crecimiento: en la década de 1990, se introduce la regulación aerodinámica por paso variable (pitch), la turbina a velocidad variable y el generador asíncrono con rotor doblemente alimentado, favorecido por el desarrollo de la electrónica de potencia. La potencia nominal crece desde unos 300 kW a inicios de la década hasta unos 1.500 kW a finales de la misma.
Etapa de consolidación y gran desarrollo: a partir del año 2000. Se consolida la turbina regulada por paso variable (pitch) frente al paso fijo por pérdida aerodinámica (stall). También aumenta notablemente el uso de turbinas con rotor a velocidad variable frente a los de velocidad constante o semivariable. Se resuelven problemas de integración en la red eléctrica, como estabilidad, respuesta frente a huecos de tensión y control de tensión y frecuencia. Se desarrollan sistemas de predicción de producción y entrega de energía eléctrica a corto plazo (24 y 48 h). Las nuevas turbinas se sitúan entre 1 a 3 MW, siendo la potencia unitaria media instalada del orden de 1,5 MW. Se inician los parques eólicos marinos (offshore).
Se espera en un futuro próximo la comercialización de turbinas eólicas de 4 a 6 MW y un gran desarrollo en el sector marino (offshore). También se espera mayor presencia de alternadores síncronos de imanes permanentes accionados por turbinas de velocidad variable sin caja multiplicadora y conectados a la red a través de convertidores de frecuencia. Actualmente se considera la potencia nominal de 5 a 6 MW como el límite máximo técnicamente viable para un aerogenerador.
Figura 1.5. Vista parcial de un parque eólico moderno.
b) Principio de funcionamiento de la turbina eólica
De forma similar a los molinos de viento, las antiguas turbinas funcionaban según el principio de la resistencia o fuerza de arrastre que ofrecían las palas a la acción del viento. Este diseño no aerodinámico, conducía a rendimientos de conversión de energía cinética del viento en energía mecánica en el eje de la máquina muy pequeños, alcanzándose tan solo valores del orden de un 12%.
Las turbinas modernas funcionan bajo el principio de la fuerza de sustentación que se desarrolla en la pala, debida a su diseño aerodinámico, de forma similar al de una ala de avión. El rendimiento máximo de conversión viene dado por el límite de Betz (59,3 %), es decir solo se puede extraer al viento como máximo el 59,3% de su energía. Actualmente, debido al avance en el diseño aerodinámico y estructural de las palas, se alcanzan valores muy elevados, del orden del 50%, próximos al límite de Betz.
También ha mejorado el rendimiento global de conversión de energía mecánica captada por el rotor de la turbina a energía eléctrica y que incluye básicamente las pérdidas mecánicas de rozamiento por transmisiones, y las pérdidas del generador eléctrico. El valor máximo de este rendimiento se sitúa en el entorno del 95%, por lo que aproximadamente un gran aerogenerador en condiciones óptimas de rendimiento máximo puede llegar a convertir en energía eléctrica aproximadamente el 45% de la energía cinética del viento que incide sobre el rotor de la turbina eólica.
c) Control de la rotación de la turbina eólica
La velocidad de giro de la turbina eólica se controla para evitar que un viento muy intenso pueda sobrecargar el generador produciéndole daños, para optimizar el rendimiento de la máquina y para controlar la tensión y frecuencia generada.
En la década de 1980, el sistema dominante fue el denominado “modelo danés”, basado en el control por pérdida aerodinámica (stall) con pala de paso fijo. El típico generador de esa época tenía una potencia nominal no mayor de unos 300 kW, rotor tripala con palas de paso fijo girando a velocidad constante y provisto de un generador asíncrono de jaula de ardilla. La velocidad de giro de la turbina eólica se regulaba por la frecuencia de la red, a través del propio generador eléctrico de inducción.
Posteriormente, se introdujo el sistema de pérdida aerodinámica activa (active stall) para lograr una mejora en el rendimiento, consistente en permitir a las palas un pequeño ángulo de giro alrededor de su eje longitudinal, iniciando la técnica de paso variable (pitch). Este giro podía ser de toda la pala o bien solo de sus extremos que de esta forma actuaban como frenos aerodinámicos. Progresivamente el control de pala de paso variable (pitch) se ha ido implantando frente al de pérdida aerodinámica de paso fijo (stall).
La evolución del cambio de turbinas eólicas de velocidad de giro constante a variable se inició con el aerogenerador capaz de operar con dos velocidades a fin de aprovechar mejor las velocidades variables del viento y mantener constante la frecuencia de la tensión generada (50 Hz en Europa, 60 Hz en América).
En la década del 2000, se ha producido un significativo aumento de las turbinas a velocidad de giro variable, que tienen mejor comportamiento que las de velocidad constante frente a las variaciones de la velocidad del viento, suavizando el par y las cargas, disminuyendo el ruido aerodinámico debido a turbulencias y mejorando el rendimiento energético. Los dos sistemas de generación eléctrica más utilizados en este tipo de turbinas eólicas a velocidad variable son: el generador asíncrono con rotor doblemente alimentado y el generador síncrono multipolo con acoplamiento directo al rotor de la turbina (sin caja multiplicadora) y con conversión de la tensión alterna de frecuencia variable generada a la salida del alternador a tensión alterna a frecuencia constante, a través de sistemas de electrónica de potencia. Este último modelo de aerogenerador permite la supresión de la caja multiplicadora de velocidad (gear box) entre el eje de la turbina eólica y el del alternador eléctrico.
d) Materiales
Las palas del rotor son las partes más sensibles a la fatiga causada por las cargas dinámicas. Inicialmente se construyeron de madera, aluminio (poco resistente a la fatiga) y de acero (muy pesado), para pasar posteriormente al uso de plásticos.
En los plásticos, inicialmente se usó el poliéster para ser desplazado en las turbinas modernas por resinas epóxicas sobre fibra de vidrio. Su fabricación encarece el coste del generador. Las palas del rotor pueden llegar a alcanzar el 20% del coste total del aerogenerador. Actualmente, se considera también la fibra de carbono como un posible material a utilizar, aunque el precio es su principal factor limitante.
e) Parámetros de funcionamiento
La mayoría de turbinas arrancan a partir de velocidades del viento alrededor de 3 a 4 m/s y alcanzan su potencia nominal entre 12 y 15 m/s. La potencia eólica es proporcional al cuadrado del diámetro del rotor eólico y al cubo de la velocidad del viento, de ahí el interés de rotores de mayor diámetro y de elevar los aerogeneradores ya que la velocidad del viento crece con la altura respecto al suelo.
La potencia específica (potencia nominal por unidad de área barrida por el rotor eólico) se sitúa alrededor de 0,4 a 0,5 kW/m2. La producción específica anual de energía eléctrica (energía anual por unidad de área barrida por el rotor) está comprendida en el intervalo de 800 a 1.500 kWh/m2.
El factor de carga, definido como la relación entre la energía eléctrica producida durante un año y la que produciría el aerogenerador si hubiese estado trabajando a potencia nominal durante ese mismo período de tiempo, se sitúa en la mayoría de los casos en el intervalo del 20 al 30% (entre 1.750 y 2.650 horas anuales equivalentes a plena carga), pudiéndose alcanzar excepcionalmente valores del orden del 40 al 50%.
La disponibilidad, definida como el porcentaje de tiempo que el generador está disponible durante un año para producir energía, excluyendo las paradas programadas por revisión y mantenimiento preventivo, alcanza valores próximos al 98%, lo que da una idea de la elevada fiabilidad y mantenibilidad alcanzada en esta tecnología.
La vida útil de los aerogeneradores se estima en unos 20 años, lo que equivale a unas 100.000 horas de funcionamiento, exceptuando el mantenimiento preventivo, las tareas de revisión y las paradas programadas.
f) Parques eólicos
A finales de la década del 2000, el aerogenerador “tipo” que integra un parque eólico, presenta las siguientes características: capacidad nominal de 1,5 a 3 MW, diámetro del rotor de 70 a 90 m, velocidad de rotación en el entorno de 10 a 15 rpm, altura de la torre de 60 a 100 m, velocidad del viento de arranque de 3 a 4 m/s, velocidad del viento nominal de 12 a 15 m/s y velocidad del viento de parada de 25 a 30 m/s.
Este aerogenerador “tipo” está caracterizado por un rotor eólico a velocidad variable, con regulación aerodinámica por variación del ángulo de paso pitch, y provisto de un generador eléctrico asíncrono con rotor bobinado doblemente alimentado o un generador síncrono multipolo. Presenta una elevada disponibilidad, superior al 98% y una eficiencia aerodinámica que puede alcanzar el 85% del límite de Betz (59,3%), lo que se traduce en un rendimiento máximo de conversión de energía cinética del viento en energía mecánica en las palas del rotor del orden del 45%. El aerogenerador presenta un buen comportamiento frente a los huecos de tensión, una adecuada gestión de la potencia activa y reactiva así como del control de tensión y frecuencia.
El tamaño medio del parque eólico “tipo” es de unos 50 MW, con un número de aerogeneradores en el entorno de 30 a 40. Para favorecer los factores de economía de escala se tiende a parques de gran capacidad nominal instalada.
g) Parámetros económicos
A finales de la década del 2000, para parques eólicos terrestres (onshore), el coste unitario de la potencia instalada se sitúa entre 1.000 y 1.600€/kW del cual el aerogenerador representa de 900 a 1.300€/kW. La estructura de costes, aproximadamente es: 70% aerogenerador, 11% obra civil, 12% equipamiento e interconexión eléctrica y 7% varios. Los costes de operación y mantenimiento (O&M) se estiman de un 2 a un 3,5% anual de la inversión, lo que los sitúa en un intervalo entre 10 y 20€/MWh eléctrico producido.
El coste unitario de inversión en parques marinos (offshore) es mayor debido esencialmente a los costes de infraestructura, transporte e interconexión eléctrica. Se sitúa en el intervalo de 2.000 a 3.000€/kW.
h) Mejoras introducidas
Entre las mejoras alcanzadas en los últimos años en la tecnología eólica cabe señalar:
Aumento del tamaño de las máquinas. Actualmente se dispone de aerogeneradores de alrededor de 3 MW, y se espera en un futuro próximo la implantación de potencias unitarias de hasta 5 MW.
Desarrollo de aerogeneradores de velocidad variable que accionan alternadores síncronos multipolo. Este tipo de alternador genera tensión a frecuencia variable que posteriormente es transformada a frecuencia constante (50 o 60 Hz) mediante conversores de frecuencia de electrónica de estado sólido.
Modelos de aerogeneradores de paso variable y velocidad variable diseñados para distintas clases de viento (clases I, II y III).
Mejoras en los sistemas de transmisión del par mecánico entre el rotor de la turbina y el generador eléctrico. Se han desarrollado sistemas de transmisión en los que el eje solo transmite el par motor, derivando las cargas debidas a los momentos flectores a la estructura de la góndola.
Mejoras en el diseño estructural y optimización del uso de materiales para disminuir el peso de la máquina con aumento de resistencia frente a cargas estáticas y dinámicas.
Se ha iniciado el desarrollo e implantación de aerogeneradores marinos (offshore).
Se han mejorado los sistemas de protección frente a descargas eléctricas atmosféricas (rayos) y la operación en condiciones atmosféricas adversas: paradas por congelación, producción con vientos muy cálidos (t > 40ºC) y generación en ambientes salinos.
Mejoras en el diseño de las torres para facilitar su transporte y montaje.
Adaptación a los requisitos de conexión con la red eléctrica (estabilidad transitoria, controles de tensión, de frecuencia, de potencias activa y reactiva, comportamiento frente a huecos y calidad de onda producida).
Avances significativos en la predicción de la producción eólica a corto plazo para cumplir exigencias de entrega de potencia y energía a la red eléctrica.
Mejora de operaciones de mantenimiento. Mayor presencia del mantenimiento remoto.
Elaboración de normas técnicas y procesos de certificación por terceros
Entre las tecnologías eólicas de los generadores eléctricos en máquinas eólicas, desarrolladas los últimos años cabe citar como más significativas:
a) La de accionamiento directo entre el rotor eólico y el generador síncrono (máquina sin caja multiplicadora) conocida como tecnología Direct Drive. La excitación se realiza mediante imanes permanentes. Se la conoce comercialmente también como tecnología Enercon. Como ventajas más relevantes presenta la supresión de la multiplicadora (gear box), la reducción de esfuerzos mecánicos, menor mantenimiento y aumento de la disponibilidad. En contrapartida la baja velocidad de giro del alternador hace que el par sea más elevado y los componentes del mismo más voluminosos y pesados, aumentando su coste.
b) Generador síncrono con excitación externa y con Full Power Converter. La excitación se realiza a través de los devanados del rotor. Presenta una respuesta correcta a los requisitos de la red y frente a huecos de tensión, así como una buena capacidad de generación de reactiva. Puede trabajar en condiciones inestables de red sin desconectar. Como contrapartida presenta un generador más pesado con un mayor cose de inversión, pérdidas en el Full Power Converter y un aumento en el equipamiento electrónico del sistema.
c) Generador asíncrono o de inducción con rotor doblemente alimentado. Presenta un mejor comportamiento frente a la demanda de reactiva que el rotor simple de jaula de ardilla, una mejor regulación y una mejor respuesta frente a huecos de tensión y otras incidencias de la red. En contrapartida requiere una mayor complejidad en su sistema de regulación y control, y es de mayor coste.