Читать книгу Философия и теория «Единого поля Вселенной» - Михаил Стефанович Галисламов - Страница 5

2. Истечение заряженных частиц из катода

Оглавление

Представление о структуре электрона развивалось постепенно. Иоганн Риттер в 1801 году высказал мысль о дискретной, зернистой структуре электричества. В 1820 году датский физик Х. Эрстэд установил связь между электричеством и магнетизмом. В этом же году французский физик А. Ампер впервые объединил электричество и магнетизм и сформулировал законы взаимодействия электрических и магнитных полей. В 1831 году английский физик М. Фарадей открыл явление электромагнитной индукции. В начале 1859 г. Ж. Плюккер исследовал спектры разреженных газов в трубках Гейслера. Он обнаружил, что с понижением давления воздуха в трубке до 1 мм ртутного столба «фарадеево темное пространство» увеличивается, а свечение вокруг катода становится более протяженным [15]. К концу XIX века были установлены следующие закономерности: 1) лучи испускаются катодами, когда через разреженное пространство трубки проходит ток; 2) лучи распространяются прямолинейно; 3) лучи отклоняются магнитным полем. В 1895 г. Плюккер сообщил об опыте, который доказывал, что катодные лучи переносят отрицательный электрический заряд.

Большой вклад в изучение катодных лучей внес английский физик сэр У. Крукс. При пропускании тока довольно высокого напряжения через атмосферный воздух, заключенный в трубке длиной 15—20 см при нормальном давлении, не наблюдалось ни искрового, ни тлеющего разряда. Ученый провел эксперименты с электрическим разрядом в трубках при низких давлениях газа. Достаточно было удалить часть воздуха из трубки, в ней начинался тлеющий разряд при неизменной разности потенциалов и при отсутствии внешних ионизаторов. Крукс наблюдал свечение стеклянной трубки при очень низких давлениях газа. Цвет сияния зависит от химической природы газа. Сияние прерывалось темными полосами. Эти полосы были особенно заметны при давлении приблизительно в одну тысячную атмосферы. Создавая в трубке высокую степень разреженности, ученый мог изучать темное пространство, которое при таких условиях появляется между катодом и катодным свечением. Согласно Круксу, пространство остается темным потому, что столкновение и свечение происходит в светлом пространстве. Он полагает, что частицы начинают светиться только после столкновения с другими частицами, в результате которого они теряют часть своей скорости. Крукс сумел доказать, что катодные лучи, ведут себя как электрические токи и оказывают механическое и тепловое воздействие на препятствие. В 1879 году английский физик У. Крукс рассматривал катодные лучи, как молекулярную лавину. Он обнаружил, что два соседних пучка катодных лучей отталкиваются; позднее отклонение лучей объяснили причинами, не связанными с взаимным отталкиванием. Ученый говорил о катодных лучах как о «четвертом состоянии» материи (плазмы). На основании результатов опытов у него сложилось впечатление, что имеет дело с частицами материи, лежащими в основе физики Вселенной [16, с. 150].

Изучая излучение различных газов заполняющих разрядную трубку, Дж. Дж. Томсон, установил, что независимо от состава газа в разряде участвуют одинаковые мельчайшие частицы, имеющие отрицательный электрический заряд. Томсон доказал, что все частицы, образующие катодные лучи, обладают одинаковым отношением заряда к массе, тождественны друг другу и входят в состав вещества. Частица была названа электроном. Результаты опытов, начатых в 1895 году, Дж. Томсон опубликовал в 1897 г. в октябрьском номере журнала «Philosophical Magazine». Установка Томсона представляла подобие трубки электронного осциллографа с одной парой пластин [16, с. 153]. Катодные лучи, исходившие из катода, ускорялись в пространстве между катодом и анодом, проходили через щель в аноде и между двумя параллельными пластинами конденсатора, ударялись об экран. Если напряжение на пластины не подавалось, то катодные лучи проходили до флюоресцирующего экрана по прямой линии. Когда на пластинах имелась разность потенциалов, лучи отклонялись, след на экране смещался, его можно было измерить. Первые снимки треков отдельных электронов были получены в туманной камере, созданной Ч. Вильсоном.

Рассуждая о природе катодных лучей, большая часть немецких ученых склонилась к мнению, что они наблюдают явление колебаний или токов в некоей гипотетической невесомой среде, в которой распространяется данное излучение. Ученые Ф. Ленард и В. Бьеркнес выступали в 1896 г. с идеей о том, что катодные лучи – это в некотором роде «эфирное распространение, которое не зависит от материи» [17, с. 417]. В то время большинство английских физиков поддерживало гипотезу о заряженных частицах (молекулах), По результатам исследований электрических разрядов в газах ученые пришли к мнению, что электроны, представляют общую для всех атомов составную часть. В 1898 г. Дж. Томсон заявил: «Катодные лучи представляют собой новое состояние материи, состояние, в котором делимость материи идет много дальше, чем в случае обычного газообразного состояния». Эта материя представляет собой вещество, из которого построены все химические элементы [18, с. 12]. Начав научную деятельность в качестве математика, Томсон до конца жизни не принял идей квантовой теории. Работы английского ученого основывались на представлениях классической физики. Он предложил модель атома и создал теорию рассеяния рентгеновских лучей. М. Борн принизил вклад оппонента в науку, обронив, что если Томсон и стал ведущей фигурой в экспериментальной физике, это не означает, что непосредственно в экспериментальной технике он был исключительно силен [19]. До открытия электрона ученые во всем мире предполагали, что атом является неделимым. Излучения различных газов, показало, что независимо от состава газа, заполняющего трубку, в результате разряда образуются одинаковые мельчайшие частицы, у которых отрицательный электрический заряд.

В 1896 г. П. Зееман обнаружил, что спектральные линии расщепляются, если источник света с линейчатым спектром (например, газоразрядная трубка или вакуумная дуга) помещается в магнитное поле с напряженностью 10000—15000 Гс [20, с. 596]. Смещение линий было незначительным. При наблюдении перпендикулярно к полю линии расщеплялись на три составляющих, при наблюдении вдоль поля – на две. Разрабатывая в 1895 году электронную теорию материи, Г. А. Лоренц высказал гипотезу, что спектральные линии излучаются электронами, колеблющимися внутри атомов [21, с. 153]. Магнитное поле действует на движущиеся электроны. Следовательно, магнитное поле действует и на спектральные линии. Исследование расщепления энергетических уровней атомов в электрическом и магнитном полях воспринимались, как важные подтверждения справедливости основных положений квантовой теории. В области прикладных исследований обнаружили, что многие результаты теории оказываются малопригодными для конкретных расчетов, либо несовершенными [22].

Необычная природа элементарных частиц заключалось в установлении того факта, что каждая частица имеет определенный внутренний спин. На английском языке «to spin» означает «вращаться волчком». В 1925 г. Гаудсмит С. А. и Уленбек Г. Е. предложили гипотезу: электрон в атоме «вращается» вокруг своей оси, в результате чего он обладает собственным угловым моментом, который и был назван спином. Ученые, основываясь на спектральных данных, приписали электрону магнитный момент и «спин» (момент вращения) – две величины, связанные с константой Планка. Получалось, что электроны вращаются не только вокруг ядра, но и вокруг собственных осей [3, с. 242]. В. Паули отвергал идею вращающегося электрона. Он указывал, что скорость поверхности такого электрона должна быть больше скорости света (с) [23]. Позже Паули ввел спин в квантовую механику, исключив толкование этой величины. «Принцип исключения», установленный В. Паули утверждает: «В атоме никогда не может быть двух или нескольких эквивалентных электронов, для которых в сильных полях значения всех квантовых чисел n, k1, k2, m1 совпадают» [24]. Если в атоме есть электрон, для которого эти квантовые числа во внешнем поле имеют определенные значения, то это состояние «занято». Умозаключение не имело аргументации: «Мы не можем более подробно обосновать это правило, однако оно выглядит само по себе очень естественным».

В марте 1926 г. С. Гаудсмит получил письмо от Л. Г. Томаса, проживавшего в г. Копенгаген, который написал: «Я полагаю, что тебе и Уленбеку очень повезло, что ваша работа о вращающемся электроне была опубликована и обсуждена до того, как об этом услышал Паули. Похоже, что Крониг более года назад думал о вращающемся электроне и что-то разработал по этому вопросу. Первый человек, которому он это показал, был Паули. Паули высмеял все дело до такой степени, что первый человек стал и последним, и никто больше об этом ничего не услышал» [25]. Крониг вернулся в Колумбийский университет и опубликовал в «Nature» и «Proceedings of the National Academy» работу, в которой он попытался показать, что гипотеза спина не может быть правильной. Его первое возражение было таким же, которое ранее выдвинул Лоренц: истолкование спина приводит к невозможной модели электрона в классике. В атоме может содержаться большое число электронов. Вторым возражением было то, что гипотеза не корректным образом предсказывала большой магнитный момент.

Согласно представлениям датского физика-теоретика Н. Бора, атом каждого элемента состоит из ядра, которое обладает положительным электрическим зарядом. В нем сосредоточена большая часть массы атома. По сравнению с размерами диаметра ядра, электроны, обладающие отрицательными зарядами и одинаковой массой, движутся вокруг ядра на очень больших расстояниях [26]. Немецкий физик М. Лауэ к недостатку теории устройства атома относит системную ошибку. Н. Бор применял классическую и релятивистскую механику для определения орбит электронов, после чего, без всякой внутренней связи с определениями, исключал большинство орбит, как не удовлетворяющих квантовым условиям [27, с. 160]. По мнению Лауэ, математика в квантовой механике применяется с большим мастерством, но ее физическое содержание до сих пор не вполне ясно. Его смущало, что она опирается на результаты спектроскопии, в измерениях которой достигается совершенно необычная для физики точность, превосходящая точность знаменитых астрономических измерений.

Хроническая слабость теории атома – отсутствие доказательства источника энергии заставляющей электрон непрерывно вращаться вокруг положительного ядра. Отсутствует и причина, для совершения данного действия. В дополнение к недоказанному эпизоду теории на электрон возложили новое обязательство – спин, вращаться вокруг своей оси, т. е. совершать дополнительное движение в веществе. Теория умалчивает о том, почему электроны не падают на ядро и не расходуют энергию на движение, преодолевая электрическое сопротивление вещества. Если использовать волюнтаристские методы, всегда можно сочинить любую наперед заданную закономерность. Большой знаток электричества, Н. Тесла, не считал знание его свойств полным и предполагал их открыть в будущем: «День, когда мы точно узнаем, что такое электричество, вероятно, станет еще более величайшим событием в летописи человечества, чем любое другое происшествие, отраженное в нашей истории» [28]. В науке значение имеет не только эксперимент, но и как ученые интерпретируют результаты опытов. Исследователи не редко допускают опрометчивое истолкование результатов исследований по причине поспешности и субъективности умозаключений.

Философия и теория «Единого поля Вселенной»

Подняться наверх