Читать книгу CompTIA CSA+ Study Guide - Mike Chapple - Страница 14
Chapter 1
Defending Against Cybersecurity Threats
Evaluating Security Risks
ОглавлениеCybersecurity risk analysis is the cornerstone of any information security program. Analysts must take the time to thoroughly understand their own technology environments and the external threats that jeopardize their information security. A well-rounded cybersecurity risk assessment combines information about internal and external factors to help analysts understand the threats facing their organization and then design an appropriate set of controls to meet those threats.
Before diving into the world of risk assessment, we must begin with a common vocabulary. You must know three important terms to communicate clearly with other risk analysts: vulnerabilities, threats, and risks.
A vulnerability is a weakness in a device, system, application, or process that might allow an attack to take place. Vulnerabilities are internal factors that may be controlled by cybersecurity professionals. For example, a web server that is running an outdated version of the Apache service may contain a vulnerability that would allow an attacker to conduct a denial-of-service (DoS) attack against the websites hosted on that server, jeopardizing their availability. Cybersecurity professionals within the organization have the ability to remediate this vulnerability by upgrading the Apache service to the most recent version that is not susceptible to the DoS attack.
A threat in the world of cybersecurity is an outside force that may exploit a vulnerability. For example, a hacker who would like to conduct a DoS attack against a website and knows about an Apache vulnerability poses a clear cybersecurity threat. Although many threats are malicious in nature, this is not necessarily the case. For example, an earthquake may also disrupt the availability of a website by damaging the datacenter containing the web servers. Earthquakes clearly do not have malicious intent. In most cases, cybersecurity professionals cannot do much to eliminate a threat. Hackers will hack and earthquakes will strike whether we like it or not.
A risk is the combination of a threat and a corresponding vulnerability. Both of these factors must be present before a situation poses a risk to the security of an organization. For example, if a hacker targets an organization’s web server with a DoS attack but the server was patched so that it is not vulnerable to that attack, there is no risk because even though a threat is present (the hacker), there is no vulnerability. Similarly, a datacenter may be vulnerable to earthquakes because the walls are not built to withstand the extreme movements present during an earthquake, but it may be located in a region of the world where earthquakes do not occur. The datacenter may be vulnerable to earthquakes but there is little to no threat of earthquake in its location, so there is no risk.
The relationship between risks, threats, and vulnerabilities is an important one, and it is often represented by this equation:
Risk = Threat × Vulnerability
This is not meant to be a literal equation where you would actually plug in values. Instead, it is meant to demonstrate the fact that risks exist only when there is both a threat and a corresponding vulnerability that the threat might exploit. If either the threat or vulnerability is zero, the risk is also zero. Figure 1.2 shows this in another way: risks are the intersection of threats and vulnerabilities.
Figure 1.2 Risks exist at the intersection of threats and vulnerabilities. If either the threat or vulnerability is missing, there is no risk.
Organizations should routinely conduct risk assessments to take stock of their existing risk landscape. The National Institute of Standards and Technology (NIST) publishes a guide for conducting risk assessments that is widely used throughout the cybersecurity field as a foundation for risk assessments. The document, designated NIST Special Publication (SP) 800-30, suggests the risk assessment process shown in Figure 1.3.
Figure 1.3 The NIST SP 800-30 risk assessment process suggests that an organization should identify threats and vulnerabilities and then use that information to determine the level of risk posed by the combination of those threats and vulnerabilities.
Source: NIST SP 800-30
Identify Threats
Organizations begin the risk assessment process by identifying the types of threats that exist in their threat environment. Although some threats, such as malware and spam, affect all organizations, other threats are targeted against specific types of organizations. For example, government-sponsored advanced persistent threat (APT) attackers typically target government agencies, military organizations, and companies that operate in related fields. It is unlikely that an APT attacker would target an elementary school.
NIST identifies four different categories of threats that an organization might face and should consider in its threat identification process:
● Adversarial threats are individuals, groups, and organizations that are attempting to deliberately undermine the security of an organization. Adversaries may include trusted insiders, competitors, suppliers, customers, business partners, or even nation-states. When evaluating an adversarial threat, cybersecurity analysts should consider the capability of the threat actor to engage in attacks, the intent of the threat actor, and the likelihood that the threat will target the organization.
● Accidental threats occur when individuals doing their routine work mistakenly perform an action that undermines security. For example, a system administrator might accidentally delete a critical disk volume, causing a loss of availability. When evaluating an accidental threat, cybersecurity analysts should consider the possible range of effects that the threat might have on the organization.
● Structural threats occur when equipment, software, or environmental controls fail due to the exhaustion of resources (such as running out of gas), exceeding their operational capability (such as operating in extreme heat), or simply failing due to age. Structural threats may come from IT components (such as storage, servers, and network devices), environmental controls (such as power and cooling infrastructure), and software (such as operating systems and applications). When evaluating a structural threat, cybersecurity analysts should consider the possible range of effects that the threat might have on the organization.
● Environmental threats occur when natural or man-made disasters occur that are outside the control of the organization. These might include fires, flooding, severe storms, power failures, or widespread telecommunications disruptions. When evaluating a structural threat, cybersecurity analysts should consider the possible range of effects that the threat might have on the organization.
The nature and scope of the threats in each of these categories will vary depending on the nature of the organization, the composition of its technology infrastructure, and many other situation-specific circumstances. That said, it may be helpful to obtain copies of the risk assessments performed by other, similar, organizations as a starting point for an organization’s own risk assessment or to use as a quality assessment check during various stages of the organization’s assessment.
The Insider Threat
When performing a threat analysis, cybersecurity professionals must remember that threats come from both external and internal sources. In addition to the hackers, natural disasters, and other threats that begin outside the organization, rouge employees, disgruntled team members, and incompetent administrators also pose a significant threat to enterprise cybersecurity. As an organization designs controls, it must consider both internal and external threats.
NIST SP 800-30 provides a great deal of additional information to help organizations conduct risk assessments, including detailed tasks associated with each of these steps. This information is outside the scope of the Cybersecurity Analyst+ exam, but organizations preparing to conduct risk assessments should download and read the entire publication.
Identify Vulnerabilities
During the threat identification phase of a risk assessment, cybersecurity analysts focus on the external factors likely to impact an organization’s security efforts. After completing threat identification, the focus of the assessment turns inward, identifying the vulnerabilities that those threats might exploit to compromise an organization’s confidentiality, integrity, or availability.
Chapters 3 and 4 of this book focus extensively on the identification and management of vulnerabilities.
Determine Likelihood, Impact, and Risk
After identifying the threats and vulnerabilities facing an organization, risk assessors next seek out combinations of threat and vulnerability that pose a risk to the confidentiality, integrity, or availability of enterprise information and systems. This requires assessing both the likelihood that a risk will materialize and the impact that the risk will have on the organization if it does occur.
When determining the likelihood of a risk occurring, analysts should consider two factors. First, they should assess the likelihood that the threat source will initiate the risk. In the case of an adversarial threat source, this is the likelihood that the adversary will execute an attack against the organization. In the case of accidental, structural, or environmental threats, it is the likelihood that the threat will occur. The second factor that contributes is the likelihood that, if a risk occurs, it will actually have an adverse impact on the organization, given the state of the organization’s security controls. After considering each of these criteria, risk assessors assign an overall likelihood rating. This may use categories, such as “low,” “medium,” and “high,” to describe the likelihood qualitatively.
Risk assessors evaluate the impact of a risk using a similar rating scale. This evaluation should assume that a threat actually does take place and cause a risk to the organization and then attempt to identify the magnitude of the adverse impact that the risk will have on the organization. When evaluating this risk, it is helpful to refer to the three objectives of cybersecurity shown in Figure 1.1, confidentiality, integrity, and availability, and then assess the impact that the risk would have on each of these objectives.
The risk assessment process described here, using categories of “high,” “medium,” and “low,” is an example of a qualitative risk assessment process. Risk assessments also may use quantitative techniques that numerically assess the likelihood and impact of risks. Quantitative risk assessments are beyond the scope of the Cybersecurity Analyst+ exam but are found on more advanced security exams, including the CompTIA Advanced Security Practitioner (CASP) and Certified Information Systems Security Professional (CISSP) exams.
After assessing the likelihood and impact of a risk, risk assessors then combine those two evaluations to determine an overall risk rating. This may be as simple as using a matrix similar to the one shown in Figure 1.4 that describes how the organization assigns overall ratings to risks. For example, an organization might decide that the likelihood of a hacker attack is medium whereas the impact would be high. Looking this combination up in Figure 1.4 reveals that it should be considered a high overall risk. Similarly, if an organization assesses the likelihood of a flood as medium and the impact as low, a flood scenario would have an overall risk of low.
Figure 1.4 Many organizations use a risk matrix to determine an overall risk rating based on likelihood and impact assessments.
Reviewing Controls
Cybersecurity professionals use risk management strategies, such as risk acceptance, risk avoidance, risk mitigation, and risk transference, to reduce the likelihood and impact of risks identified during risk assessments. The most common way that organizations manage security risks is to develop sets of technical and operational security controls that mitigate those risks to acceptable levels.
Technical controls are systems, devices, software, and settings that work to enforce confidentiality, integrity, and/or availability requirements. Examples of technical controls include building a secure network and implementing endpoint security, two topics discussed later in this chapter. Operational controls are practices and procedures that bolster cybersecurity. Examples of operational controls include conducting penetration testing and using reverse engineering to analyze acquired software. These two topics are also discussed later in this chapter.