Читать книгу Convex Optimization - Mikhail Moklyachuk - Страница 2
ОглавлениеTable of Contents
1 Cover
6 1 Optimization Problems with Differentiable Objective Functions 1.1. Basic concepts 1.2. Optimization problems with objective functions of one variable 1.3. Optimization problems with objective functions of several variables 1.4. Constrained optimization problems 1.5. Exercises
7 2 Convex Sets 2.1. Convex sets: basic definitions 2.2. Combinations of points and hulls of sets 2.3. Topological properties of convex sets 2.4. Theorems on separation planes and their applications 2.5. Systems of linear inequalities and equations 2.6. Extreme points of a convex set 2.7. Exercises
8 3 Convex Functions 3.1. Convex functions: basic definitions 3.2. Operations in the class of convex functions 3.3. Criteria of convexity of differentiable functions 3.4. Continuity and differentiability of convex functions 3.5. Convex minimization problem 3.6. Theorem on boundedness of Lebesgue set of a strongly convex function 3.7. Conjugate function 3.8. Basic properties of conjugate functions 3.9. Exercises
9 4 Generalizations of Convex Functions 4.1. Quasi-convex functions 4.2. Pseudo-convex functions 4.3. Logarithmically convex functions 4.4. Convexity in relation to order 4.5. Exercises
10 5 Sub-gradient and Sub-differential of Finite Convex Function 5.1. Concepts of sub-gradient and sub-differential 5.2. Properties of sub-differential of convex function 5.3. Sub-differential mapping 5.4. Calculus rules for sub-differentials 5.5. Systems of convex and linear inequalities 5.6. Exercises
11 6 Constrained Optimization Problems 6.1. Differential conditions of optimality 6.2. Sub-differential conditions of optimality 6.3. Exercises 6.4. Constrained optimization problems 6.5. Exercises 6.6. Dual problems in convex optimization 6.7. Exercises
12 Solutions, Answers and Hints
13 References
14 Index
List of Illustrations
1 Chapter 1Figure 1.1. Example 1.5Figure 1.2. Example 1.6
2 Chapter 2Figure 2.1. Convex set X1. Non-convex set X2Figure 2.2. X1 is a cone. X2 is a convex coneFigure 2.3. Conjugate conesFigure 2.4. Affine set and linear subspaceFigure 2.5. a) Convex hull. b) Conic hullFigure 2.6. a) Convex polyhedron. b) Polyhedral coneFigure 2.7. Unbounded closed convex setFigure 2.8. Projection of a point onto a setFigure 2.9. Sets X1 and X2 are: a) properly separated; b) strongly separated; c)...Figure 2.10. a), c) Properly supporting hyperplanes; b) supporting hyperplane
3 Chapter 3Figure 3.1. Convex functionFigure 3.2. Epigraph of convex functionFigure 3.3. Epigraph of nonconvex functionFigure 3.4. Separating linear function
4 Chapter 5Figure 5.1. Example 5.1
Pages
1 v
2 iii
3 iv
4 ix
5 x
6 xi
7 xii
8 1
9 2
10 3
11 4
12 5
13 6
14 7
15 8
16 9
17 10
18 11
19 12
20 13
21 14
22 15
23 16
24 17
25 18
26 19
27 20
28 21
29 22
30 23
31 24
32 25
33 26
34 27
35 28
36 29
37 30
38 31
39 32
40 33
41 34
42 35
43 36
44 37
45 38
46 39
47 40
48 41
49 42
50 43
51 44
52 45
53 46
54 47
55 48
56 49
57 50
58 51
59 52
60 53
61 54
62 55
63 56
64 57
65 58
66 59
67 60
68 61
69 62
70 63
71 64
72 65
73 66
74 67
75 68
76 69
77 70
78 71
79 72
80 73
81 74
82 75
83 76
84 77
85 78
86 79
87 80
88 81
89 82
90 83
91 84
92 85
93 86
94 87
95 88
96 89
97 90
98 91
99 92
100 93
101 94
102 95
103 96
104 97
105 98
106 99
107 100
108 101
109 102
110 103
111 104
112 105
113 106
114 107
115 108
116 109
117 111
118 112
119 113
120 114
121 115
122 116
123 117
124 118
125 119
126 120
127 121
128 122
129 123
130 124
131 125
132 126
133 127
134 128
135 129
136 130
137 131
138 132
139 133
140 134
141 135
142 136
143 137
144 138
145 139
146 140
147 141
148 142
149 143
150 144
151 145
152 146
153 147
154 148
155 149
156 150
157 151
158 152
159 153
160 154
161 155
162 156
163 157
164 158
165 159
166 160
167 161
168 162
169 163
170 164
171 165
172 166
173 167
174 168
175 169
176 170
177 171
178 172
179 173
180 174
181 175
182 176
183 177
184 178
185 179
186 180
187 181
188 182
189 183
190 184
191 185
192 186
193 187
194 188
195 189
196 190
197 191
198 192
199 193
200 194
201 195
202 196
203 197
204 198
205 199
206 200
207 201
208 202
209 203
210 204
211 205
212 206
213 207
214 208
215 209
216 210
217 211
218 212
219 213
220 214
221 215
222 216
223 217
224 218
225 219
226 220
227 221
228 222
229 223
230 224
231 225
232 226
233 227
234 228
235 229
236 230
237 231
238 232
239 233
240 235
241 236
242 237
243 238
244 239
245 241
246 242
247 243
248 244
249 245
250 246
251 247