Читать книгу Convex Optimization - Mikhail Moklyachuk - Страница 2

Оглавление

Table of Contents

Cover

Title Page

Copyright

Notations

Introduction

1 Optimization Problems with Differentiable Objective Functions 1.1. Basic concepts 1.2. Optimization problems with objective functions of one variable 1.3. Optimization problems with objective functions of several variables 1.4. Constrained optimization problems 1.5. Exercises

2 Convex Sets 2.1. Convex sets: basic definitions 2.2. Combinations of points and hulls of sets 2.3. Topological properties of convex sets 2.4. Theorems on separation planes and their applications 2.5. Systems of linear inequalities and equations 2.6. Extreme points of a convex set 2.7. Exercises

3 Convex Functions 3.1. Convex functions: basic definitions 3.2. Operations in the class of convex functions 3.3. Criteria of convexity of differentiable functions 3.4. Continuity and differentiability of convex functions 3.5. Convex minimization problem 3.6. Theorem on boundedness of Lebesgue set of a strongly convex function 3.7. Conjugate function 3.8. Basic properties of conjugate functions 3.9. Exercises

4 Generalizations of Convex Functions 4.1. Quasi-convex functions 4.2. Pseudo-convex functions 4.3. Logarithmically convex functions 4.4. Convexity in relation to order 4.5. Exercises

10  5 Sub-gradient and Sub-differential of Finite Convex Function 5.1. Concepts of sub-gradient and sub-differential 5.2. Properties of sub-differential of convex function 5.3. Sub-differential mapping 5.4. Calculus rules for sub-differentials 5.5. Systems of convex and linear inequalities 5.6. Exercises

11  6 Constrained Optimization Problems 6.1. Differential conditions of optimality 6.2. Sub-differential conditions of optimality 6.3. Exercises 6.4. Constrained optimization problems 6.5. Exercises 6.6. Dual problems in convex optimization 6.7. Exercises

12  Solutions, Answers and Hints

13  References

14  Index

15  End User License Agreement

List of Illustrations

1 Chapter 1Figure 1.1. Example 1.5Figure 1.2. Example 1.6

2 Chapter 2Figure 2.1. Convex set X1. Non-convex set X2Figure 2.2. X1 is a cone. X2 is a convex coneFigure 2.3. Conjugate conesFigure 2.4. Affine set and linear subspaceFigure 2.5. a) Convex hull. b) Conic hullFigure 2.6. a) Convex polyhedron. b) Polyhedral coneFigure 2.7. Unbounded closed convex setFigure 2.8. Projection of a point onto a setFigure 2.9. Sets X1 and X2 are: a) properly separated; b) strongly separated; c)...Figure 2.10. a), c) Properly supporting hyperplanes; b) supporting hyperplane

3 Chapter 3Figure 3.1. Convex functionFigure 3.2. Epigraph of convex functionFigure 3.3. Epigraph of nonconvex functionFigure 3.4. Separating linear function

4 Chapter 5Figure 5.1. Example 5.1

Guide

Cover

Table of Contents

Title Page

Copyright

Notations

Introduction

Begin Reading

Solutions, Answers and Hints

References

10  Index

11  End User License Agreement

Pages

v

iii

iv

ix

x

xi

xii

1

2

10  3

11 4

12  5

13  6

14  7

15  8

16  9

17  10

18  11

19  12

20 13

21 14

22  15

23  16

24  17

25  18

26  19

27  20

28  21

29  22

30 23

31 24

32 25

33 26

34 27

35 28

36  29

37 30

38  31

39  32

40  33

41  34

42  35

43  36

44  37

45  38

46  39

47  40

48  41

49  42

50  43

51  44

52  45

53  46

54  47

55  48

56  49

57  50

58  51

59  52

60  53

61  54

62  55

63  56

64  57

65  58

66  59

67  60

68  61

69  62

70  63

71  64

72  65

73  66

74  67

75  68

76  69

77  70

78  71

79 72

80  73

81  74

82  75

83  76

84  77

85  78

86  79

87  80

88  81

89  82

90  83

91  84

92  85

93  86

94  87

95  88

96  89

97  90

98  91

99  92

100  93

101  94

102  95

103  96

104  97

105  98

106  99

107 100

108 101

109 102

110 103

111 104

112 105

113 106

114 107

115 108

116 109

117  111

118  112

119  113

120  114

121  115

122  116

123  117

124  118

125  119

126  120

127  121

128  122

129  123

130  124

131  125

132  126

133  127

134  128

135  129

136  130

137  131

138 132

139 133

140  134

141 135

142 136

143  137

144  138

145  139

146  140

147  141

148  142

149  143

150  144

151  145

152  146

153  147

154  148

155  149

156  150

157  151

158  152

159  153

160  154

161  155

162  156

163  157

164  158

165  159

166  160

167  161

168  162

169  163

170  164

171  165

172  166

173  167

174  168

175  169

176 170

177  171

178 172

179 173

180  174

181  175

182  176

183  177

184  178

185  179

186  180

187  181

188  182

189  183

190  184

191 185

192  186

193  187

194 188

195  189

196  190

197  191

198  192

199  193

200  194

201  195

202  196

203  197

204  198

205  199

206  200

207  201

208  202

209  203

210  204

211  205

212  206

213  207

214  208

215  209

216 210

217 211

218 212

219 213

220  214

221 215

222 216

223  217

224 218

225 219

226  220

227  221

228  222

229  223

230  224

231  225

232 226

233  227

234 228

235 229

236  230

237  231

238  232

239  233

240  235

241 236

242  237

243 238

244 239

245  241

246  242

247  243

248  244

249  245

250  246

251  247

Convex Optimization

Подняться наверх