Жанры
Авторы
Контакты
О сайте
Книжные новинки
Популярные книги
Найти
Главная
Авторы
Mohamed N. Rahaman
Materials for Biomedical Engineering
Читать книгу Materials for Biomedical Engineering - Mohamed N. Rahaman - Страница 1
Оглавление
Предыдущая
Следующая
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
190
Оглавление
Купить и скачать книгу
Вернуться на страницу книги Materials for Biomedical Engineering
Оглавление
Страница 1
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Страница 7
Страница 8
Страница 9
Страница 10
Страница 11
1 Biomaterials – An Introductory Overview 1.1 Introduction
1.2 Definition and Meaning of Common Terms
Biomaterial
Biocompatibility
Host Response
Categories of Biomaterials
Natural and Synthetic Biomaterials
Degradable, Nondegradable and Resorbable Biomaterials
Bioactivity
Tissue Engineering and Regenerative Medicine
In Vivo
,
Ex Vivo,
and
In Vitro
1.3 Biomaterials Design and Selection
1.3.1 Evolving Trend in Biomaterials Design
1.3.2 Factors in Biomaterials Design and Selection
1.4 Properties of Materials
1.4.1 Intrinsic Properties of Metals
1.4.2 Intrinsic Properties of Ceramics
1.4.3 Intrinsic Properties of Polymers
1.4.4 Properties of Composites
1.4.5 Representation of Properties
1.5 Case Study in Materials Design and Selection: The Hip Implant
Femoral Stem
Femoral Head
Acetabular Cup
Modern Hip Implants
1.6 Brief History of the Evolution of Biomaterials
Prior to World War II
A Few Decades After World War II
Contemporary Period
1.7 Biomaterials – An Interdisciplinary Field
1.8 Concluding Remarks
Problems
References
Страница 45
2 Atomic Structure and Bonding 2.1 Introduction
2.2 Interatomic Forces and Bonding Energies
Relationship of Interatomic Force and Bonding Energy to Properties of Materials
2.3 Types of Bonds between Atoms and Molecules
2.4 Primary Bonds
The Octet Rule
NaCl Molecule
CH
4
Molecule
Electronegativity of Atoms
Polarity of Covalent Bond
2.4.1 Ionic Bonding
Example 2.1
Solution:
2.4.2 Covalent Bonding
Hybrid Orbitals
Covalent Bonding in Ceramics
Covalent Bonding in Polymers
2.4.3 Metallic Bonding
2.5 Secondary Bonds
2.5.1 Van der Waals Bonding
2.5.2 Hydrogen Bonding
2.6 Atomic Bonding and Structure in Proteins
2.6.1 Primary Structure
2.6.2 Secondary Structure
Stereochemistry of the Amide Bond
Hydrogen Bonding
2.6.3 Tertiary Structure
Globular Proteins
Fibrous Proteins
2.6.4 Quaternary Structure
2.7 Concluding Remarks
Problems
Reference
Further Reading
3 Structure of Solids 3.1 Introduction
3.2 Packing of Atoms in Crystals
3.2.1 Unit Cells and Crystal Systems
Unit Cell Parameters
Crystal Systems and Bravais Lattices
3.3 Structure of Solids Used as Biomaterials
3.3.1 Crystal Structure of Metals
Example 3.1
3.3.2 Crystal Structure of Ceramics
Crystal Structure of Hydroxyapatite
3.3.3 Structure of Inorganic Glasses
3.3.4 Structure of Carbon Materials
Fullerenes, Graphenes, and Carbon Nanotubes
3.3.5 Structure of Polymers
3.4 Defects in Crystalline Solids
3.4.1 Point Defects
3.4.2 Line Defects: Dislocations
Types of Dislocations
Slip or Plastic Deformation Resulting from Dislocation Motion
3.4.3 Planar Defects: Surfaces and Grain Boundaries
3.5 Microstructure of Biomaterials
3.5.1 Microstructure of Dense Biomaterials
3.5.2 Microstructure of Porous Biomaterials
3.6 Special Topic: Lattice Planes and Directions
Unit Cell Geometry
Lattice Positions
Lattice Planes
Lattice Directions
3.7 Concluding Remarks
Problems
References
Further Reading
4 Bulk Properties of Materials 4.1 Introduction
4.2 Mechanical Properties of Materials
4.2.1 Mechanical Stress and Strain
Uniaxial Tension and Compression
Shear Deformation
Torsional Deformation
Flexural Deformation (Bending)
4.2.2 Elastic Modulus
4.2.3 Mechanical Response of Materials
Elastic and Plastic Deformation
Elastic Limit and Yield Point
Definition and Determination of Strength
True Stress and Strain Versus Engineering (Nominal) Stress and Strain
Example 4.1
Solution:
Viscoelasticity
4.2.4 Stress–Strain Behavior of Metals, Ceramics, and Polymers
4.2.5 Fracture of Materials
Crack Formation
Crack Propagation
Theoretical Analysis of Brittle Fracture
4.2.6 Toughness and Fracture Toughness
4.2.7 Fatigue
4.2.8 Hardness
4.3 Effect of Microstructure on Mechanical Properties
4.3.1 Effect of Porosity
4.3.2 Effect of Grain Size
4.4 Designing with Ductile and Brittle Materials
4.4.1 Designing with Metals
4.4.2 Designing with Ceramics
4.4.3 Designing with Polymers
4.5 Electrical Properties
4.5.1 Electrical Conductivity of Materials
4.5.2 Electrical Conductivity of Conducting Polymers
4.6 Magnetic Properties
4.6.1 Origins of Magnetic Response in Materials
4.6.2 Meaning and Definition of Relevant Magnetic Properties
4.6.3 Diamagnetic and Paramagnetic Materials
4.6.4 Ferromagnetic Materials
4.6.5 Ferrimagnetic Materials
4.6.6 Magnetization Curves and Hysteresis
4.6.7 Hyperthermia Treatment of Tumors using Magnetic Nanoparticles
4.7 Thermal Properties
4.7.1 Thermal Conductivity
4.7.2 Thermal Expansion Coefficient
4.8 Optical Properties
4.9 Concluding Remarks
Problems
References
Further Reading
5 Surface Properties of Materials 5.1 Introduction
5.2 Surface Energy
5.2.1 Determination of Surface Energy of Materials
Example 5.1
Solution:
5.2.2 Measurement of Contact Angle
5.2.3 Effect of Surface Energy
5.3 Surface Chemistry
5.3.1 Characterization of Surface Chemistry
Auger Electron Spectroscopy (AES)
X‐ray Photoelectron Spectroscopy (XPS)
Secondary Ion Mass Spectroscopy (SIMS)
5.4 Surface Charge
5.4.1 Surface Charging Mechanisms
5.4.2 Measurement of Surface Charge and Potential
5.4.3 Effect of Surface Charge
5.5 Surface Topography
5.5.1 Surface Roughness Parameters
5.5.2 Characterization of Surface Topography
Scanning Electron Microscopy (SEM)
Atomic Force Microscopy (AFM)
Profilometry
5.5.3 Effect of Surface Topography on Cell and Tissue Response
5.6 Concluding Remarks
Problems
References
Further Readings
Страница 189
{buyButton}
Подняться наверх