Читать книгу Биология. Общая биология. Профильный уровень. 10 класс - Н. И. Сонин - Страница 22

Раздел 1. Происхождение и начальные этапы развития жизни на Земле
Глава 2. Возникновение жизни на Земле
2.5. Начальные этапы биологической эволюции

Оглавление

Наиболее важными событиями биологической эволюции после возникновения фотосинтеза и аэробного типа обмена следует считать появление эукариот и многоклеточности.

В результате взаимополезного сожительства – симбиоза – различных прокариотических клеток возникли ядерные, или эукариотические, организмы (рис. 2.9). Сущность гипотезы симбиогенеза заключается в следующем. Основной «базой» для симбиоза была, по-видимому, гетеротрофная амебоподобная клетка. Пищей ей служили более мелкие клетки. Одним из объектов питания такой клетки могли стать дышащие кислородом аэробные бактерии, способные функционировать и внутри клетки-хозяина, производя энергию. Те крупные амебовидные клетки, в теле которых аэробные бактерии оставались невредимыми, оказались в более выгодном положении, чем клетки, продолжавшие получать энергию анаэробным путем – брожением. В дальнейшем бактерии-симбионты превратились в митохондрии. Когда к поверхности клетки-хозяина прикрепилась вторая группа симбионтов – жгутикоподобных бактерий, сходных с современными спирохетами, возникли жгутики и реснички. В результате подвижность и способность к нахождению пищи у такого организма резко возросли. Так возникли примитивные животные клетки – предшественники ныне живущих жгутиковых простейших.


Рис. 2.9. Схема симбиотического возникновения эукариот


Образовавшиеся подвижные эукариоты путем симбиоза с фотосинтезирующими (возможно, цианобактериями) организмами дали водоросль, или растение. Очень важно то обстоятельство, что строение пигментного комплекса у фотосинтезирующих анаэробных бактерий поразительно сходно с пигментами зеленых растений. Такое сходство не случайно и указывает на возможность эволюционного преобразования фотосинтезирующего аппарата анаэробных бактерий в аналогичный аппарат зеленых растений. Изложенная гипотеза о возникновении эукариотических клеток через ряд последовательных симбиозов хорошо обоснована, и ее приняли многие ученые. Во-первых, одноклеточные водоросли и сейчас легко вступают в союз с животными-эукариотами. Например, в теле инфузории туфельки обитает водоросль хлорелла. Во-вторых, некоторые органоиды клетки, такие как митохондрии и пластиды, по строению своей ДНК удивительно похожи на прокариотические клетки – бактерии и цианобактерии.

Возможности эукариот по освоению среды еще большие. Связано это с тем, что организмы, обладающие ядром, имеют диплоидный набор всех наследственных задатков – генов, т. е. каждый из них представлен в двух вариантах. Появление двойного набора генов сделало возможным обмен полными копиями генов между разными организмами, принадлежащими к одному виду, – появилось половое размножение. На рубеже архейской и протерозойской эр половой процесс привел к значительному увеличению разнообразия живых организмов благодаря созданию новых многочисленных комбинаций генов. Одноклеточные организмы быстро размножились на планете. Однако их возможности в освоении среды обитания ограничены. Они не могут и расти беспредельно. Объясняется это тем, что дыхание простейших организмов осуществляется через поверхность тела. При увеличении размеров клетки одноклеточного организма его поверхность возрастает в квадратичной зависимости, а объем – в кубической, в связи с чем биологическая мембрана, окружающая клетку, неспособна обеспечить кислородом слишком большой организм. Иной эволюционный путь осуществился позже, около 2,6 млрд лет назад, когда появились организмы, эволюционные возможности которых значительно шире, – многоклеточные организмы.

Первая попытка разрешения вопроса о происхождении многоклеточных организмов принадлежит немецкому биологу Э. Геккелю (1874). В построении своей гипотезы он исходил из исследований эмбрионального развития ланцетника, проведенных к тому времени А. О. Ковалевским и другими зоологами. Основываясь на биогенетическом законе, Э. Геккель полагал, что каждая стадия онтогенеза повторяет какую-то стадию, пройденную предками данного вида во время филогенетического развития. По его представлениям, стадия зиготы соответствует одноклеточным предкам, стадия бластулы – шарообразной колонии жгутиковых. В дальнейшем, в соответствии с этой гипотезой, произошло впячивание (инвагинация) одной из сторон шарообразной колонии (как при гаструляции у ланцетника) и образовался гипотетический двухслойный организм, названный Геккелем гастреей, поскольку он похож на гаструлу.

Представления Э. Геккеля получили название теории гастреи. Несмотря на механистичность рассуждений Геккеля, отождествлявшего стадии онтогенеза со стадиями эволюции органического мира, теория гастреи сыграла важную роль в истории науки, так как способствовала утверждению монофилетических (из одного корня) представлений о происхождении многоклеточных.


Рис. 2.10. Вольвокс


Основу современных представлений о возникновении многоклеточных организмов составляет гипотеза И. И. Мечникова (1886) – гипотеза фагоцителлы. По предположению ученого, многоклеточные произошли от колониальных простейших – жгутиковых. Пример такой организации – ныне существующие колониальные жгутиковые типа вольвокс (рис. 2.10).

Среди клеток колонии выделяются движущие, снабженные жгутиками; питающие, фагоцитирующие добычу и уносящие ее внутрь колонии; половые, функцией которых является размножение. Первичным способом питания таких примитивных колоний был фагоцитоз. Клетки, захватившие добычу, перемещались внутрь колонии. Затем из них образовалась ткань – энтодерма, выполняющая пищеварительную функцию. Клетки, оставшиеся снаружи, выполняли функцию восприятия внешних раздражений, защиты и функцию движения. Из подобных клеток развивалась покровная ткань – эктодерма. Часть клеток специализировалась на выполнении функции размножения. Они стали половыми клетками. Так колония превратилась в примитивный, но целостный многоклеточный организм.

Подтверждением гипотезы фагоцителлы служит строение примитивного многоклеточного организма – трихоплакса. Русский ученый А. В. Иванов установил, что трихоплакс по своему строению соответствует гипотетическому существу – фагоцителле и должен быть выделен в особый тип животных – фагоцителлоподобных, занимающих промежуточное положение между многоклеточными и одноклеточными организмами.


Рис. 2.11. Схема перехода химической эволюции в биологическую


Потребность в увеличении скорости передвижения, необходимого для захвата пищи, благоприятствовала дальнейшей дифференцировке, что обеспечило эволюцию многоклеточных – животных и растений, и привела к увеличению многообразия форм живого.

На схеме (рис. 2.11) изображены основные этапы химической и биологической эволюции.

Таким образом, возникновение жизни на Земле носит закономерный характер, и ее появление связано с длительным процессом химической эволюции, происходившей на нашей планете. Формирование структуры, отграничивающей организм от окружающей среды, – мембраны с присущими ей свойствами – способствовало появлению живых организмов и ознаменовало начало биологической эволюции. Как простейшие живые организмы, возникшие около 3 млрд лет назад, так и более сложно устроенные в основе своей структурной организации имеют клетку.

Summary

Development of energetic systems, as well as the appearance of albuminous enzymes and the genetic code marked the transition from evolution of organic molecules to the biological evolution. Current notions on the mechanisms of these processes are mostly hypothetical, though a number of experiments are known, that clarify some of their stages. Thus, reliable research data confirm the extreme simplicity of metabolism in the earliest living beings on the Earth. These mechanisms of metabolism were continuously improving during the evolutionary process.

Опорные точки

1. Первыми живыми организмами на нашей планете были гетеротрофные прокариотические организмы.

2. Истощение органических запасов первичного океана вызвало появление автотрофного типа питания, в частности фотосинтеза.

3. Появление эукариотических организмов сопровождалось возникновением диплоидности и ограниченного оболочкой ядра.

4. На рубеже архейской и протерозойской эры произошли первые многоклеточные.

Вопросы для повторения и задания

1. В чем заключается сущность гипотезы возникновения эукариот путем симбиогенеза?

2. Какими способами первые эукариотические клетки получали энергию, необходимую для процессов жизнедеятельности?

3. У каких организмов впервые в процессе эволюции появился половой процесс?

4. Опишите сущность гипотезы И. И. Мечникова о возникновении многоклеточных организмов.

Используя словарный запас рубрик «Терминология» и «Summary», переведите на английский язык пункты «Опорных точек».

Терминология

Каждому термину, указанному в левой колонке, подберите соответствующее ему определение, приведенное в правой колонке на русском и английском языках.

Select the correct definition for every term in the left column from English and Russian variants listed in the right column.


Вопросы для обсуждения

Какие ограничения накладывает одноклеточность на эволюцию живых организмов?

В чем вы видите недостатки гипотезы Э. Геккеля (гипотезы гастреи) о возникновении многоклеточных организмов? В чем заключается научное значение представлений Э. Геккеля?

Как вы думаете, каким образом происходило формирование специфической каталитической активности белков у протобионтов?


Конец ознакомительного фрагмента. Купить книгу
Биология. Общая биология. Профильный уровень. 10 класс

Подняться наверх