Читать книгу Исследование возможности и разработка технических решений по переработке отходов производства щебня. Научный отчет - Наталья Кузнецова - Страница 4

Введение

Оглавление

Актуальность проблемы.

Технологические процессы производства строительных материалов сопровождаются образованием значительного количества твердых отходов пылевидного состава, содержащих наряду с исходным сырьем и посторонние включения. Наличие большого количества примесей в пылевидных отходах препятствует их использованию в производстве, поэтому они направляются на полигоны и несанкционированные свалки, что ведет к негативному воздействию на окружающую среду. Такое положение с пылевидными отходами приводит не только к загрязнению окружающей среды – воздуха, воды, почвы, требующее дополнительных территорий на их захоронение и размещение, но и к расточительному расходованию в большинстве своём невозобновляемых минеральных ресурсов. Наличие пылевидных отходов – результат низкого уровня технологий, позволяющих подготовить их для использования в производстве. Например, при производстве щебня образуется большое количество твердых отходов пылевидного состава (отсевов), содержащие вместе со щебнем и глинистые частицы. Только в Волгоградской области уже накоплено 1,657 млн. т. и ежегодно образуется 159 тыс. т. отходов производства щебня. В таком количестве их не принимают на полигоны, поэтому отсевы щебня направляют в отвалы, в результате чего окружающая среда испытывает негативную нагрузку – происходит загрязнение окружающей среды из-за уноса глинистых частиц, образуются несанкционированные свалки. Например, в Волгоградской области общая площадь только стихийных свалок превышает 400 тыс. кв. метров. Использование отсевов, например, для строительства дорог ограничивается тем, что содержание глинистых частиц в них значительно превышает допустимое значение (3% по массе).

Проблема разделения пылевидных отходов важна не только для промышленности строительных материалов, но и для других производств, на которых образуются пылевидные отходы, содержащих исходное сырье и посторонние включения. Разделение пылевидных отходов позволяет, с одной стороны, снизить количество отходов, сократив тем самым, количество несанкционированных свалок, предотвратить вторичное загрязнение окружающей среды, а с другой стороны -обеспечить экономию минеральных природных ресурсов.

В настоящее время для разделения твердых частиц используются методы магнитной, акустической, электростатической, центробежной и гравитационной сепарации. Из всех известных методов наиболее перспективным представляется метод аэродинамического разделения, что объясняется тем, что он позволяет разделить пылевидные отходы с достаточной эффективностью, является экономичным и простым в аппаратурном оформлении.

Таким образом, является актуальным решение экологической проблемы снижения антропогенного воздействия на окружающую среду пылевидных отходов посредством совершенствования аэродинамической системы их разделения.

Цель работы. Снижение антропогенного воздействия за счет сокращения объема пылевидных отходов, поступающих на полигоны и несанкционированные свалки, посредством совершенствования системы разделения пылевидных отходов.

Для достижения поставленной цели в работе решались следующие задачи:

– анализ загрязнения окружающей среды отходами, образующимися в технологическом процессе производства щебня;

– исследование дисперсного состава, основных свойств и токсичности пылевидных загрязнителей окружающей среды;

– теоретический расчет и экспериментальное определение скоростей витания исследуемых пылевидных отходов;

Основная идея работы состоит в сокращении объема пылевидных отходов, направляемых в отвалы и на полигоны и оказывающих негативное воздействие на окружающую среду, путем повышения эффективности систем разделения при использовании закрученных потоков.

Методы исследования включали: аналитическое обобщение известных научных и технических результатов, математическую обработку экспериментальных данных методами математической статистики и корреляционного анализа с применением ПЭВМ, лабораторные и опытно —промышленные исследования.

Анализ технологических процессов производства щебня как источника образования отходов и их воздействия на окружающую среду


Значительная часть современных технологических процессов связана с изготовлением, переработкой, транспортированием и применением порошкообразных материалов, и сопровождается образованием большого количества пылевидных отходов. Недостаточное внимание к воздействию на окружающую среду пылевидных отходов, которые к тому же содержат ценные компоненты, несовершенство или высокая стоимость существующих систем разделения пылевидных отходов приводит к тому, что количество последних увеличивается. Неиспользуемые отходы производства в значительных количествах накапливаются в отвалах, что приводит к негативному воздействию на окружающую среду.

На территории России в отвалах накоплено около 80 млрд. т. различных твердых отходов [34, 65 – 69, 75]. В связи с недостаточным количеством полигонов для складирования и захоронения промышленных отходов, широкое распространение получила практика размещения отходов в местах неорганизованного складирования (несанкционированные свалки), которые не отвечают действующим нормативам, представляя особую опасность для окружающей среды [17, 58, 70, 71]. Объемы размещения отходов на несанкционированных свалках, площади занятых под них земель постоянно растут, а, следовательно, растет и негативное воздействие на окружающую среду. Например, в Волгоградской области общая площадь только стихийных свалок превышает 400 тыс. кв. метров и складируется там более 100 тыс. т отходов [37]. А площадь санкционированных девяти полигонов промышленных отходов – около 210 га. Хранится на них приблизительно 50 млн. т. отходов и каждый год эта масса увеличивается еще на 2 млн. т. [37].

Положение с отходами производства выросло в огромную экологическую проблему, и необходимость ее решения обусловлена загрязнением окружающей среды и истощением природных ресурсов.

Технологические процессы производства строительных материалов сопровождаются образованием значительного количества пылевидных отходов, содержащих наряду с посторонними включениями, исходное сырье, которое может быть возвращено в производство. Извлечения посторонних включений позволяет, с одной стороны, снизить негативное воздействие отходов на окружающую среду, а с другой стороны обеспечить экономию минеральных природных ресурсов [44].


В Волгоградской области накоплено 1,657 млн. т. и ежегодно образуется 159 тыс. т. отходов производства щебня, содержащих щебень и глинистые частицы [75].

Сырьем для производства щебня (фракционного камня) служит горная масса. Добытый в карьере материал представляет собой смесь кусков различных размеров и формы. В горной массе находятся обычно различные примеси (ил, глина), содержание которых в товарном продукте недопустимо. Для того чтобы горную массу превратить в качественный материал, необходимо выполнить целый ряд технологических операций, основными из которых являются дробление и сортировка. [31].

По химическому составу породы состоят в основном из окиси кальция и окиси магния. Физико-механические свойства карбонатных пород характеризуются значительной неоднородностью. Плотность изменяется от 2,60 до 2,96 г/см3, объемная масса от 1,79 до 2,81 г/см3, пористость – от 35,5 до 1,1%, водопоглощение от 0,44 до 21,18%, прочность – от 31 до 1503 кгс/см2 в насыщенном водой состоянии. Коэффициент морозостойкости изменяется от 0,45 до 0,97. Эти данные [44] приведены для горной массы, добытой в карьере «Перекопский» Клетского района Волгоградской области.

Технологический процесс производства щебня состоит в последовательном дроблении и сортировки. Дробильно-сортировочная установка состоит из следующих элементов: – питателя пластинчатого ТК-15А-01; агрегата крупного дробления СМ-16Д; грохота сортировки; агрегата передвижного среднего дробления СМД-131А; агрегата сортировки передвижного СМД —174 [31].

Установка оснащена металлоискателем, семью конвейерами ленточными ТК. Из карьера сырье доставляется автосамосвалами КРАЗ, КАМАЗ и ссыпается в приемный бункер установки, оттуда питателем подается на дробление. Продукт дробления подается на грохот сортировки, где происходит рассев на фракции 0¸10мм, 10¸20 мм; 20¸70мм. Фракции 0¸10мм, 10¸20 транспортируются на склад. Фракция 20¸70 мм поступает на агрегат среднего дробления СМД -131 А. На этом агрегате происходит дробление на фракции 20¸40 мм, 40¸70мм. Раздробленная порода подается на агрегат сортировки СМД-174. После сортировки фракции 20¸40 мм, 40¸70мм подаются на склад [21—23]. Схема производства щебня представлена на рис. 1.1. [21].

Отсевы карбонатной породы, образующиеся после грохочения, отбираются и отдаются в лабораторию на анализ на содержание пылеватых и глинистых частиц. Как правило, содержание пылеватых и глинистых частиц превышает 3% по массе, следовательно, такое сырье не пригодно для производства щебня [79, 80] и направляется в отвал. Отсевы щебня складируются в карьерах, засоряя огромные территории, в то время, как отделение щебня от глинистых позволило сократить воздействие пылевидных отходов на окружающую среду, вернув их в производство.



Анализ существующих методов разделения пылевидных отходов различных производств для вторичного использования


Анализ технологических процессов позволил определить, что в производстве щебня образуются пылевидные отходы, содержащие, наряду с исходным продуктом и посторонние включения, которые не позволяют их повторно использовать в производстве. Для снижения антропогенного воздействия на окружающую среду и сохранения минеральных ресурсов необходимо снизить количество образующихся пылевидных отходов посредством совершенствования системы их разделения.

В настоящее время для отделения твердых частиц применяются различные методы сепарации, в том числе магнитная, акустическая, электростатическая сепарация, разделение под действием гравитационных сил, центробежных сил, а также разделение по аэродинамическим свойствам пыли. В данной работе рассматриваются только сухие методы, поскольку применение мокрых методов сепарации делает невозможным или слишком сложным и дорогостоящим использование отделенных компонентов в производстве и промышленности строительных материалов.

Магнитная сепарация сыпучих материалов. Магнитные сепараторы – это многоцелевые системы, предназначенные для отделения магнитных примесей от немагнитных [36]. Различают магнитные сепараторы, использующие в своей работе постоянные магниты и электромагниты.

Магнитные сепараторы для сыпучих веществ обычно устанавливаются в трубопровод, по которому транспортируется сыпучий продукт. Сепараторы такого типа предназначены для удаления из сыпучих материалов случайно попавших железосодержащих примесей, при их небольших количествах. Магнитные системы генерируют неоднородное магнитное поле, которое отделяет и удерживает магнитные примеси на поверхности магнитных труб. Магнитный сепаратор необходимо периодически очищать от накопленных магнитных примесей. Это может производиться вручную, полуавтоматически и автоматически в зависимости от типа сепаратора.

В настоящее время используются следующие основные типы сепараторов на постоянных магнитах: барабанные сепараторы, плоские магнитные сепараторы, магнитные сепараторы из системы выдвижных решеток [36].

Существует большое разнообразие конструкций магнитных сепараторов [36]. Магнитный способ сепарации достигает большой эффективности в основном за счет интенсивной магнитной коагуляции, образуя агрегаты ферромагнитных частиц. Однако, во-первых, магнитная сепарация не позволяет разделять пылевидные отходы на фракции, а во-вторых, она применима только для отделения частиц, обладающих магнитными свойствами.

Сепарация в акустическом поле. В последние годы разделение пылегазовых потоков проводят с помощью акустических полей. Акустическая коагуляция осуществляется при воздействии на запыленный газ упругих колебаний звуковой и ультразвуковой частоты. Эти колебания вызывают вибрацию пыли, в результате чего растет число их столкновений. Процесс коагуляции происходит при силе звука не менее145—150 децибел и частоте 2—50кГц [32]. Скорость пылегазового потока не должна превышать при этом величины критической скорости, определяемой силами сцепления в данной неоднородной системе. Кроме того, концентрация дисперсной фазы должна быть в пределах 0,2—230 г/м3 [32]. Акустическая коагуляция находит промышленное применение для предварительной очистки горячих газовых потоков, а также при обработке газов в условиях повышенной опасности. Акустическая коагуляция также не позволяет классифицировать частицы по фракциям. Кроме того, этот метод применим для мелкодисперсной фракции.

Сепарация в электрическом поле. Сепарация в электрическом поле основана на том, что при поступлении пылевоздушной смеси в неоднородное электрическое поле в местах с большим напряжением образуются ионы, которые движутся в направлении осадительного электрода под воздействием сил поля [32, 84]. При движении эти ионы поглощаются частицами пыли, увеличивая их заряд. Заряженные частицы будут продолжать двигаться к осадительному электроду и оседать на нем. Учитывая, что частицы могут получать большие заряды, несмотря на малую массу, то и силы электрического поля намного больше инерционных и гравитационных. Но электрическая сепарация эффективна для частиц менее 10 мкм [32].

Конструкции и методы аэродинамического разделения сыпучих материалов на фракции. По способу перевода частиц в подвижное состояние различают механические (сита, грохоты, вибросепараторы) и аэродинамические классификаторы [7,11,12,22,27,29,31,35,40—43,50-52,57,60].

Разделение порошкообразных материалов на фракции просеиванием через сита является самым простым. Применяя сита с различными отверстиями можно разделить сыпучий материал на определенное количество фракций. Устройства, в которых идет процесс просеивания называют ситами или грохотами. Сита применяют в случае разделения мелкозернистых сыпучих материалов, а грохот при разделении крупнозернистых и кусковых материалов [15,25—27,31,51].

Выделяют колосниковые, валковые, качающиеся грохоты, гирационные грохоты, вибрационные грохоты, барабанные грохоты [40, 41, 51].

Валковые грохоты имеют высокую производительность, устойчивы в работе и не дают динамических нагрузок, что позволяет их устанавливать в верхних этажах. Эти достоинства валковых грохотов, несмотря на некоторую сложность в изготовлении, способствуют их широкому распространению [51].

Исследование возможности и разработка технических решений по переработке отходов производства щебня. Научный отчет

Подняться наверх