Читать книгу Analysis and Control of Electric Drives - Ned Mohan - Страница 4

List of Illustrations

Оглавление

1 Chapter 1Fig. 1-1 Block diagrams of (a) electric machines and (b) electric drives (mo...Fig. 1-2 Electric drive for wind generators.Fig. 1-3 Primary energy consumption by end‐use sector in the United States i...Fig. 1-4 Traditional and ASD‐based flow control systems.Fig. 1-5 Energy usage in (a) residential sector and (b) commercial sector.Fig. 1-6 Need for controlling the electromagnetic torque Tem.Fig. 1-7 Power and speed range of electric drives.Fig. P1-5 Plot of Cp as a function of λ [6].

2 Chapter 2Fig. 2-1 Block diagram of adjustable speed drives.Fig. 2-2 (a) Electric drive system and (b) example of a load‐speed profile r...Fig. 2-3 Motion of a mass M due to the action of forces.Fig. 2-4 (a) Pivoted lever and (b) holding torque for the lever.Fig. 2-5 Torque in an electric motor.Fig. 2-6 Calculation of the inertia, Jcyl, of a solid cylinder.Fig. 2-7 Motor and load torque interaction with a rigid coupling.Fig. 2-8 Speed, torque, and angle variations with time.Fig. 2-9 Torque, work, and power.Fig. 2-10 Actual and linearized friction characteristics.Fig. 2-11 Motor and load‐torque interaction with a rigid coupling.Fig. 2-12 Electrical analogy: (a) shaft of finite stiffness and (b) shaft of...Fig. 2-13 (a) Electrical equivalent and (b) torque and speed variation.Fig. 2-14 Combination of rotary and linear motion.Fig. 2-15 Gear mechanism for coupling the motor to the load.Fig. 2-16 (a) Electric drive and (d) four-quadrant operation.Fig. P2-10 Lead‐screw system.

3 Chapter 3Fig. 3-1 (a and b) Magnetic field and (c) Ampere’s Law.Fig. 3-2 Toroid.Fig. 3-3 B‐H characteristics of ferromagnetic materials.Fig. 3-4 Toroid with flux ϕm.Fig. 3-5 Magnetic structure with air gap.Fig. 3-6 Coil inductance.Fig. 3-7 Rectangular toroid.Fig. 3-8 Voltage polarity and direction of flux and current.Fig. 3-9 Waveforms of flux and induced voltage.Fig. 3-10 Voltage, current, and flux.Fig. 3-11 (a) Magnetic and leakage fluxes and (b) equivalent representation ...Fig. 3-12 (a) Circuit representation and (b) leakage inductance separated fr...Fig. 3-13 Motor construction: (a) “cut” perpendicular to the shaft‐axis and ...Fig. 3-14 Structure of machines.Fig. 3-15 Production of a magnetic field.Fig. 3-16 Electric force on a current‐carrying conductor in a magnetic field...Fig. 3-17 Figure for Example 3-9.Fig. 3-18 Conductor moving in a magnetic field.Fig. 3-19 Figure for Example 3-10.Fig. 3-20 Motoring mode.Fig. 3-21 Regenerative braking mode.Fig. 3-22 Power losses and energy efficiency.Fig. P3-9 Problem 3‐9.Fig. P3-10 Problem 3‐10.Fig. P3-11 Problem 3‐11.Fig. P3-12 Problem 3‐12.Fig. P3-13 Problem 3‐13.Fig. P3-14 Problem 3‐14.Fig. P3-15 Problem 3‐15.Fig. P3-16 Problem 3‐16.Fig. P3-17 Problem 3‐17.

4 Chapter 4Fig. 4-1 Voltage‐link system.Fig. 4-2 Switch mode converters for (a) dc‐ and (b) ac‐machine drives.Fig. 4-3 Switching power‐pole as the building block in converters.Fig. 4-4 PWM of the switching power‐pole.Fig. 4-5 Bidirectional power flow through a switching power‐pole.Fig. 4-6 Bidirectional switching power‐pole.Fig. 4-7 Switching‐cycle‐averaged representation of the bidirectional power‐...Fig. 4-8 Waveforms for PWM in a switching power‐pole.Fig. 4-9 Switching power‐pole and its duty‐ratio control.Fig. 4-10 Harmonics in the output of a switching power‐pole.Fig. 4-11 Converter for a dc‐motor drive.Fig. 4-12 Switching‐cycle‐averaged representation of the converter for dc dr...Fig. 4-13 Gain of the converter for dc drives.Fig. 4-14 Switching voltage waveforms in a converter for dc drive.Fig. 4-15 Currents defined in the converter for dc‐motor drives.Fig. 4-16 Superposition of dc and ripple‐frequency variables.Fig. 4-17 Switching current waveforms in Example 4-3.Fig. 4-18 Waveforms of a switching power‐pole to synthesize low‐frequency ac...Fig. 4-19 Three‐phase converter.Fig. 4-20 Switching‐cycle‐averaged output voltages in a three‐phase converte...Fig. 4-21 Switching‐cycle‐averaged voltages due to Sine‐PWM.Fig. 4-22 Switching waveforms in Example 4-4.Fig. 4-23 MOSFET characteristics.Fig. 4-24 IGBT symbol and characteristics.Fig. 4-25 Block diagram of a gate‐drive circuit.Fig. 4-26 Real‐time full‐bridge converter pulse‐width modulation.Fig. 4-27 Full‐bridge converter output voltage and output current.

5 Chapter 5Fig. 5-1 Feedback‐controlled drive.Fig. 5-2 Exploded view of a dc motorFig. 5-3 dc motor equivalent circuit.Fig. 5-4 (a) Torque‐speed characteristics and (b) Va versus ωm.Fig. 5-5 Simplified control system representation.Fig. 5-6 (a) Phase margin and (b) bandwidth.Fig. 5-7 (a) Gain magnitude of a first‐order system open loop, (b) the gain ...Fig. 5-8 Cascade control of a motor drive.Fig. 5-9 (a) Switch‐mode converter for motor drives, (b) average model of th...Fig. 5-10 dc motor and mechanical load: (a) equivalent circuit and (b) block...Fig. 5-11 PI controller.Fig. 5-12 Design of the torque control loop.Fig. 5-13 Frequency response of the current loop: (a) open loop and (b) clos...Fig. 5-14 Block diagram of the speed loop.Fig. 5-15 Speed loop response: (a) open loop and (b) closed loop.Fig. 5-16 Block diagram of position loop.Fig. 5-17 Position loop response: (a) open‐loop and (b) closed loop.Fig. 5-18 Control system with feed‐forward.Fig. 5-19 (a) Limits on the PI controller and (b) PI with anti‐windup.Fig. 5-20 Real‐time dc motor speed control.Fig. 5-21 Hardware speed control.Fig. P5-12 Speed controller.

6 Chapter 6Fig. 6-1 Magnetic axes of the three phases in a 2‐pole machine.Fig. 6-2 Sinusoidally distributed winding for phase‐a.Fig. 6-3 Calculation of air gap field distribution.Fig. 6-4 Developed view of the field distribution in the air gap.Fig. 6-5 Paths corresponding to Example 6-1.Fig. 6-6 Phase a of a 4‐pole machine.Fig. 6-7 Three‐phase windings.Fig. 6-8 Waveforms of flux density.Fig. 6-9 Representation of MMF space vector in a machine.Fig. 6-10 (a) Resultant flux‐density space vector and (b) flux‐density distr...Fig. 6-11 (a) Phase voltages and currents and (b) physical interpretation of...Fig. 6-12 (a) Stator current space vector and (b) the equivalent winding.Fig. 6-13 Phase components of a space vector.Fig. 6-14 (a) Windings, (b) magnetizing currents, and (c) rotating mmf space...Fig. 6-15 Example 6-7.Fig. 6-16 Relationship between space vectors and phasors in balanced sinusoi...Fig. 6-17 Winding current and induced emf: (a) individual windings, (b) phas...Fig. 6-18 Example 6.8.

7 Chapter 7Fig. 7-1 Switch‐mode inverter.Fig. 7-2 Basic voltage vectors ( and not shown).Fig. 7-3 Voltage vector in Sector 1.Fig. 7-4 Waveforms in Sector 1; z = z0 +z7.Fig. 7-5 Simulation of Example 7-1.Fig. 7-6 Simulation results of Example 7-1.Fig. 7-7 Limit on amplitude Fig. 7-8 Real‐time three‐phase inverter (a) Sine‐PWM and (b) SV‐PWM.

8 Chapter 8Fig. 8-1 Characteristics of various permanent‐magnet materials.Fig. 8-2 Block diagram of the closed‐loop operation of a PMAC drive.Fig. 8-3 Two‐pole PMAC machine.Fig. 8-4 The stator current and the rotor field space vectors in PMAC drives...Fig. 8-5 Torque calculation on the stator.Fig. 8-6 Similarities between (a) dc motor and (b) PMAC motor drives.Fig. 8-7 Rotor‐load mechanical system.Fig. 8-8 Stator‐current space vector for Example 8-1.Fig. 8-9 (a) Induced emf due to rotating rotor flux‐density space vector and...Fig. 8-10 (a) Space vector diagram of induced emfs and (b) phasor diagram fo...Fig. 8-11 (a) Per‐phase equivalent circuit and (b) simplified equivalent cir...Fig. 8-12 (a) Block diagram representation of hysteresis current control and...Fig. 8-13 Real‐time PMAC motor hysteresis current control.Fig. 8-14 Hardware speed result.Fig. 8-15 Three phase stator current.

9 Chapter 9Fig. 9-1 (a) Three‐phase stator winding axes and (b) squirrel‐cage rotor.Fig. 9-2 Balanced three‐phase sinusoidal voltages applied to the stator, rot...Fig. 9-3 Space vector representations at time t = 0, (b) voltage and current...Fig. 9-4 (a) Two winding transformer and (b) equivalent circuit of the two w...Fig. 9-5 (a) Induced voltages in the rotor bar and (b) motion of the rotor b...Fig. 9-6 (a) Polarities of voltages induced and (b) electrical equivalent ci...Fig. 9-7 (a) Rotor‐produced flux and the flux , and (b) space vector diag...Fig. 9-8 Rotor‐produced mmf and the compensating mmf at time t = t1.Fig. 9-9 Example 9-2.Fig. 9-10 Voltage induced in bar “p” at (a) t = 0 and (b) t = t1.Fig. 9-11 Calculation of electromagnetic torque.Fig. 9-12 Torque‐speed characteristic of induction motors.Fig. 9-13 Operation of an induction motor.Fig. 9-14 Regenerative braking in induction motors.Fig. 9-15 Example 9-5.Fig. 9-16 Reversing the direction of rotation in an induction motor.Fig. 9-17 Space vectors with the effect of rotor leakage flux included.Fig. 9-18 Rated voltage applied.Fig. 9-19 Blocked rotor and slip‐frequency voltages applied.Fig. 9-20 Splitting the rotor resistance into the loss component and power o...Fig. 9-21 (a) Per‐phase equivalent circuit including the stator leakage and ...Fig. 9-22 (a) No‐load test and (b) blocked‐rotor test.Fig. 9-23 (a) Torque‐speed characteristic and (b) current‐speed characterist...Fig. 9-24 Typical performance curves for Design B 10 kW, 4‐pole, three‐phase...Fig. 9-25 Typical torque‐speed characteristics of NEMA design A, B, C, and D...Fig. 9-26 Available acceleration torque during start‐up.

10 Chapter 10Fig. 10-1 Block diagram of an induction‐motor drive.Fig. 10-2 Operation characteristics with constant .Fig. 10-3 Example 10-1.Fig. 10-4 (a) Per‐phase equivalent circuit in balanced steady state, (b) equ...Fig. 10-5 Relation of applied voltage and frequency at the rated flux densit...Fig. 10-6 Example 10-2.Fig. 10-7 Start‐up considerations in induction‐motor drives.Fig. 10-8 Capability below and above the rated speed.Fig. 10-9 Induction‐generator drives.Fig. 10-10 Speed control of induction‐motor drives.Fig. 10-11 PPU of induction‐motor drives.Fig. 10-12 (a) PPU output voltage waveforms and (b) harmonic spectrum of L‐L...Fig. 10-13 Per‐phase equivalent circuit (a) at the fundamental frequency and...Fig. 10-14 (a) Equivalent circuit for fundamental and harmonic frequencies i...Fig. 10-15 Real‐time model to obtain induction motor torque‐speed characteri...Fig. 10-16 Real‐time induction motor closed‐loop speed control.Fig. 10-17 Hardware result of closed‐loop speed control.

11 Chapter 11Fig. 11-1 Stator windings.Fig. 11-2 Three‐phase windings.Fig. 11-3 Single‐phase magnetizing inductance Lm,one‐phase and leakage...Fig. 11-4 Mutual inductance Lmutual.Fig. 11-5 Rotor circuit represented by three‐phase windings.Fig. 11-6 Space vector representation of various mmf quantities.Fig. 11-7 Physical interpretation of stator current space vector.Fig. 11-8 Relationship between space vector and phasor in sinusoidal steady ...Fig. 11-9 All stator space vectors are collinear (rotor open‐circuited).Fig. 11-10 All rotor space vectors are collinear (stator open‐circuited).

12 Chapter 12Fig. 12-1 Representation of stator mmf by equivalent dq‐windings.Fig. 12-2 Representation of rotor mmf by equivalent dq‐winding currents.Fig. 12-3 Stator and rotor representation by equivalent dq‐winding currents....Fig. 12-4 Transformation of phase quantities into dq‐winding quantities: (a)...Fig. 12-5 Stator αβ and dq equivalent windings.Fig. 12-6 Rotor αβ and dq equivalent windings.Fig. 12-7 Calculating dq‐winding flux linkages and currents.Fig. 12-8 Torque on the rotor d‐axis.Fig. 12-9 Torque on the rotor q‐axis.Fig. 12-10 dq‐winding equivalent circuits: (a) d‐axis and (b) q‐axis.Fig. 12-11 Per‐phase equivalent circuit in steady state.Fig. 12-12 Induction motor model in terms of dq‐windings.Fig. 12-13 Simulation of Example 12-3.Fig. 12-14 Simulation results of Example 12-3.

13 Chapter 13Fig. 13-1 Stator and the rotor mmf representations by equivalent dq winding ...Fig. 13-2 Dynamic circuits with the d‐axis aligned with .Fig. 13-3 The d‐axis circuit simplified with a current excitation.Fig. 13-4 Motor model with d‐axis aligned with .Fig. 13-5 Simulations of Example 13-1.Fig. 13-6 Results of Example 13-1.Fig. 13-7 Vector‐controlled induction motor with a CR‐PWM inverter.Fig. 13-8 Vector‐controlled induction motor drive with a current‐regulated P...Fig. 13-9 Design of the speed‐loop controller.Fig. 13-10 Simulation of Example 13-2.Fig. 13-11 Results of Example 13-2.Fig. 13-12 Vector control with applied voltages.Fig. 13-13 Design of the current‐loop controller.Fig. 13-14 Simulation of Example 13-3.Fig. 13-15 Simulation results of Example 13-3.Fig. 13-16 Real‐time induction motor vector control.Fig. 13-17 Simulation versus hardware speed result.Fig. 13-18 Estimated torque versus load torque in hardware.

14 Chapter 14Fig. 14-1 Open‐loop ωmech and position estimator.Fig. 14.2 Simulation of Example 14-1. (a) Overall Simulink model and (b) ope...Fig. 14-3 Results of Example 14-1.Fig. 14-4 MRAS ωm and position estimator.Fig. 14‐5 MRAS θda and determination.Fig. 14-6 Simulation of Example 14-2 MRAS estimator.Fig. 14-7 Results of Example 14-2.Fig. 14-8 MRAS estimator linearized system transfer function.Fig. 14-9 Simulation of Example 14-4: open‐speed estimator effect of paramet...Fig. 14-10 Simulation of Example 14-4: MRAS estimator effect of parameter va...Fig. 14-11 Bode plot of an ideal and practical integrator.Fig. 14-12 Bode plot of an ideal and practical differentiator.

15 Chapter 15Fig. 15-1 Wind turbines with a complete power‐electronics interface [1].Fig. 15-2 Doubly fed generators (DFIGs) [1].Fig. 15-3 Cross‐section of a DFIG.Fig. 15-4 DFIG space vectors at the time t = 0; drawn with ωslip = +.Fig. 15-5 Rotor circuit one‐line diagram at slip‐frequency.Fig. 15-6 Flows of real and reactive power in a DFIG using a motoring conven...Fig. 15-7 d‐axis aligned with the rotor flux; stator and rotor current vecto...Fig. 15-8 Space vector diagram for Example 15-1.Fig. 15-9 Space vector diagram for Example 15-2.Fig. 15-10 Vector control DFIG drive.Fig. 15-11 Simulation of Example 15-3.Fig. 15-12 Simulation results of Example 15-3.

16 Chapter 16Fig. 16-1 Block diagram of DTC.Fig. 16-2 Changing the position of stator flux‐linkage vector.Fig. 16-3 Inverter basic vectors and sectors.Fig. 16-4 Stator voltage vector selection in sector 1.Fig. 16-5 Simulation of Example 16-1.Fig. 16-6 Reference and estimated torque of Example 16-1.Fig. 16-7 Actual and estimated motor speed of Example 16-1.Fig. 16-8 Estimated stator flux of Example 16-1.

17 Chapter 17Fig. 17-1 Permanent‐magnet synchronous motor rotor structure.Fig. 17-2 Reluctance variation of permanent‐magnet synchronous machine.Fig. 17-3 Permanent‐magnet synchronous machine (shown with p = 2).Fig. 17-4 Per‐phase equivalent circuit in steady state (ωm in elec. rad...Fig. 17-5 Controller in the dq reference frame.Fig. 17-6 Simulation of Example 17-1.Fig. 17-7 Simulation results of Example 17-1.Fig. 17-8 Stator flux‐linkage space vector.Fig. 17-9 IPM motor position estimator and controller.Fig. 17-10 Rotor position and speed estimation.Fig. 17-11 Rotor position estimator linearized system transfer function.Fig. 17-12 Restructured rotor position estimator transfer function.Fig. 17-13 Simulation of Example 17-3.Fig. 17-14 Simulation result of Example 17-3.Fig. 17-15 Electromagnetic torque as a function of current space vector posi...Fig. 17-16 Real‐time SPM synchronous motor vector control.Fig. 17-17 Hardware speed and dq‐current result.

18 Chapter 18Fig. 18-1 Position change in a stepper‐motor.Fig. 18-2 (a) Cross‐section of a primitive machine and (b) λi trajec...Fig. 18-3 Variable‐reluctance motor; excitation sequence a‐b‐c‐a...Fig. 18-4 Two‐phase permanent‐magnet stepper‐motor; excitation sequence ia+,...Fig. 18-5 Axial view of a hybrid stepper‐motor.Fig. 18-6 Hybrid stepper‐motor excitation. (a) Phase‐a excited with ia+ and ...Fig. 18-7 Per‐phase equivalent circuit of a stepper‐motor.Fig. 18-8 Half‐excitation by exciting two phases.Fig. 18-9 Unipolar voltage drive for variable‐reluctance motor: (a) circuit ...Fig. 18-10 Bipolar voltage drive.Fig. 18-11 Cross‐section of a four‐phase 8/6 switched reluctance machine.Fig. 18-12 (a) Aligned position for phase‐a and (b) unaligned position for p...Fig. 18-13 Typical flux‐linkage characteristics of an SRM.Fig. 18-14 Calculation of torque.Fig. 18-15 Performance assuming idealized current waveform.Fig. 18-16 Performance with a power‐processing unit.Fig. 18-17 Flux‐linkage trajectory during motoring.Fig. 18-18 Power converter for a four‐phase switched reluctance drive.Fig. 18-19 Estimation of rotor position.Fig. 18-20 Control block diagram for motoring.

Analysis and Control of Electric Drives

Подняться наверх