Читать книгу Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет - Нейт Сильвер - Страница 6

Введение
Обещания и подводные камни «Больших данных»

Оглавление

В наши времена модным стал термин «Большие данные»[2]. По расчетам компании IBM, мы ежедневно создаем 2,5 квинтильона байтов данных, а 90 % информации, имеющейся в нашем распоряжении, было получено за последние два года{36}.

Этот экспоненциальный рост информации, как и компьютеры в 1970‑е гг., порой представляется нам лекарством от всех болезней. Крис Андерсон, редактор журнала Wired, писал в 2008 г., что сам по себе огромный объем данных способен заменить собой теорию и даже научный метод{37}.

Книга, которую я написал, стои́т на стороне науки и технологии, и я считаю подобную позицию вполне оптимистичной. Однако следует помнить, что мы склонны допускать массу ошибок. Цифры сами по себе не умеют говорить. Именно мы говорим за них. Мы наполняем их смыслом. Как и Цезарь, мы можем трактовать их в свою пользу, что порой уводит нас слишком далеко от объективной реальности.

Управляемые данными предсказания способны обеспечить нам успех – или привести к неудаче. Шансы на неудачу возрастают, когда мы отрицаем собственную роль в процессе. Перед тем как потребовать большего от данных, мы должны потребовать больше от себя.

Если вы знаете мою предысторию, то такая точка зрения может показаться вам довольно странной. Многие слышали о том, что я умею работать с данными и статистически их обрабатывать. Я использую имеющуюся информацию для создания довольно успешных прогнозов. В 2003 г., когда мне уже порядком надоело консультировать клиентов, я занялся созданием системы, получившей название PECOTA, цель которой состояла в предсказании результатов игроков Главной бейсбольной Лиги. Она имела целый ряд инноваций (например, ее прогнозы носили вероятностный характер, и в них указывался диапазон возможных исходов для каждого игрока). Сравнив наши результаты с соответствующими результатами конкурирующих систем, мы обнаружили, что смогли их переиграть. В 2008 г. я создал веб-сайт FiveThirtyEight, призванный предсказать результаты надвигавшихся выборов. Прогнозы FiveThirtyEight правильно назвали победителя президентского голосования в 49 из 50 штатов, а также победителей голосования в 35 штатах по итогам выборов в Сенат.

После выборов со мной связалось несколько издателей, желавших заработать на издании пользовавшихся успехом книг типа «Moneyball» и «Фрикономика»[3] (в которых были приведены истории «ботаников», завоевавших мир). Они хотели, чтобы и в моей книге рассказывалось бы о чем-то подобном, то есть о предсказаниях, основанных на данных в различных областях, начиная от бейсбола и заканчивая финансами и национальной безопасностью.

Однако, пообщавшись в течение четырех лет более чем с сотней экспертов в десятке областей, прочитав сотни журнальных статей и книг и пропутешествовав в ходе своего расследования от Лас-Вегаса до Копенгагена, я постепенно понял, что предсказания в условиях эры Больших данных оказываются не особенно успешными. Мне же повезло сразу на нескольких уровнях: во-первых, из-за того, что я достиг успеха, несмотря на огромное количество сделанных ошибок (о которых я поговорю позднее), и, во-вторых, из-за того, что я правильно выбирал свои битвы.

Бейсбол, например, – уникальный, исключительный случай. Можно сказать, что это особенно яркое и открывающее нам глаза исключение, и в книге объясняется, почему это так и почему через десяток лет после выхода «Moneyball» фанаты статистики и скауты сотрудничают между собой в условиях, близких к полной гармонии.

В книге приведены и некоторые другие примеры, вселяющие в нас надежду. Один из них – прогнозирование погоды, требующее и человеческих суждений, и компьютерных мощностей. Метеорологи имеют довольно плохую репутацию, однако им удалось достичь заметного прогресса в работе: они способны предсказать место появления центра урагана в три раза точнее, чем четверть века назад. Кроме этого, мне довелось встречаться с игроками в покер и людьми, делавшими ставки на спортивные события и переигрывавшими Лас-Вегас. Встречался я и с программистами, создавшими для компании IBM компьютер Deep Blue, который смог обыграть чемпиона мира по шахматам.

Однако все эти примеры прогресса в области прогнозирования с лихвой уравновешиваются массой примеров неудач.

Если бы мне нужно было назвать единственную определяющую черту американцев – то, что делает нас исключительными, – я бы назвал веру в идею Кассия, в то, что мы сами контролируем собственную судьбу. Наша страна была создана на заре промышленной революции религиозными бунтарями, считавшими, что свободный поток идей помогает распространять не только религиозные, но и научные и коммерческие убеждения. Значительная доля наших сильных и слабых черт – нашей изобретательности и нашего трудолюбия, нашего высокомерия и нашего нетерпения – проистекает из непоколебимой веры в идею о том, что мы сами выбираем собственный путь.

Однако новое тысячелетие началось для американцев отвратительно. Мы не ожидали атак 11 сентября. Основная проблема заключалась в нежелании увидеть информацию. Как и в случае с нападением на Перл-Харбор шестью десятилетиями ранее, у нас имелись все сигналы. Однако мы не сопоставили одни сигналы с другими. При отсутствии достойной теории о поведении террористов мы оказались слепы к данным, а атаки оказались для нас «неизвестным неизвестным».

Немало неудачных предсказаний было связано и с недавним глобальным финансовым кризисом. Наша наивная вера в модели и неспособность понять, насколько сильно они полагаются на довольно хрупкие предположения, уже привела к разрушительным результатам. Кроме этого, я обнаружил, что даже в более рутинных условиях мы неспособны спрогнозировать рецессии более чем за несколько месяцев – и совсем не потому, что не стараемся этого сделать.

Несмотря на значительный прогресс в контроле уровня инфляции, можно сказать, что во всех остальных важных вопросах творцы нашей экономической политики действуют вслепую.

Модели прогнозирования, опубликованные политологами в преддверии президентских выборов 2000 г., предсказали убедительную победу Ала Гора, причем с большим перевесом{38}.

Однако выборы выиграл Джордж У. Буш. Неверные прогнозы такого рода вряд ли можно считать аномальными – они довольно типичны для политических предсказаний. Многолетнее исследование, проведенное Филипом Э. Тэтлоком из Пенсильванского университета, показало, что даже после того, как политологи заявляли о полной невозможности определенного политического события, оно тем не менее происходило примерно в 15 % случаев (при этом результаты политологов зачастую оказываются лучше, чем выводы аналитиков, мелькающих в телевизионных шоу).

В последнее время, как и в 1970‑х гг., предпринимался ряд попыток предсказать землетрясения, в основном с помощью математических методов, предполагающих управление данными.

Однако в результате некоторые предсказанные землетрясения так и не произошли, но были другие, к которым мы не смогли подготовиться. Конструкция ядерного реактора в Фукусиме предусматривала возможность выдерживать землетрясение магнитудой 8,6 балла, отчасти потому, что некоторые сейсмологи посчитали, что более сильные землетрясения просто невозможны. Однако в марте 2011 г. произошло самое ужасное в истории Японии землетрясение магнитудой 9,1 балла.

Существует целый ряд научных дисциплин, в которых предсказания часто оказываются неверными, и порой это обходится обществу очень дорого. Достаточно рассмотреть отрасль биомедицинских исследований. В 2005 г. уроженец Афин, медицинский исследователь по имени Джон П. Иоаннидис опубликовал довольно противоречивую работу под названием «Почему самые широко публикуемые выводы исследований неверны»{39}.

В работе изучались выводы, полученные другими исследователями, точнее, были приведены описания различных медицинских гипотез, выдвинутых в рамках лабораторных экспериментов. По мнению автора, большинство этих выводов показало бы свою несостоятельность в условиях реального мира. Не так давно компания Bayer Laboratories подтвердила гипотезу Иоаннидиса. При проведении собственных экспериментов компании не удалось повторить около двух третей результатов, о которых сообщалось в медицинских журналах{40}.

Большие данные действительно приведут к прогрессу, но лишь со временем. Насколько быстро это произойдет, и возможен ли дальнейший регресс, будет зависеть от нас самих.

Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет

Подняться наверх