Читать книгу Основы глубокого обучения - Нихиль Будума - Страница 4
Глава 1. Нейросеть
Ограничения традиционных компьютерных программ
ОглавлениеПочему некоторые задачи компьютерам решать тяжело? Стандартные программы доказали свою состоятельность в двух областях: 1) они очень быстро ведут вычисления; 2) они неукоснительно следуют инструкциям. Если вы финансист и вам нужно провести сложные математические подсчеты, вам повезло. Типовые программы вам в помощь. Но представьте себе, что нам нужно сделать кое-что поинтереснее: например, написать программу для автоматического распознавания почерка. Возьмем за основу рис. 1.1.
Рис. 1.1. Изображение из массива рукописных данных MNIST[2]
Хотя каждая цифра на рисунке слегка отличается от предыдущей, мы легко опознаем в первом ряде нули, во втором – единицы и т. д. Теперь напишем компьютерную программу, которая решит ту же задачу. Какие правила нужно задать, чтобы различать цифры?
Начнем с простого. Например, укажем, что нулю соответствует изображение округлого замкнутого контура. Все примеры с рис. 1.1, кажется, удовлетворяют этому определению, но таких признаков недостаточно. Что, если у кого-то ноль – не всегда замкнутая фигура? И как отличить такой ноль (см. рис. 1.2) от шестерки?
Рис. 1.2. Ноль, алгоритмически трудноотличимый от шестерки
Можно задать рамки расстояния между началом и концом петли, но не очень понятно какие. И это только начало проблем. Как различить тройки и пятерки? Четверки и девятки? Можно добавлять правила, или признаки, после тщательных наблюдений и месяцев проб и ошибок, но понятно одно: процесс будет нелегок.
Многие другие классы задач попадают в ту же категорию: распознавание объектов и речи, автоматический перевод и т. д. Мы не знаем, какие программы писать для них, потому что не понимаем, как с этим справляется наш мозг. А если бы и знали, такая программа была бы невероятно сложной.
2
LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-Based Learning Applied to Document Recognition // Proceedings of the IEEE. 1998. November. Vol. 86 (11). Pp. 2278–2324.