Читать книгу Вопрос жизни. Энергия, эволюция и происхождение сложности - Ник Лейн - Страница 6

Часть II
О жизни

Оглавление

Глава 3
Энергия и начало жизни

Старинные водяные мельницы и современные гидроэлектростанции работают благодаря направленному движению потоков воды. Если перегородить реку плотиной и оставить в ней небольшое отверстие, напор воды будет гораздо мощнее и его хватит, чтобы крутить мельничное колесо. А если позволить потоку течь по широкому руслу, напор уменьшится.

Клетки живых организмов работают по тому же принципу. Метаболический путь можно сравнить с руслом, по которому “течет” углерод. В метаболическом пути последовательность химических реакций катализируется рядом поочередно действующих ферментов. Продукт реакции, катализируемой первым ферментом, является субстратом для второго, и т. д. Ферменты служат как бы берегами, в которых течет углерод, и направляют его ход. Органическая молекула входит в метаболический путь, подвергается ряду химических превращений и выходит уже в виде другой молекулы. Последовательность реакций метаболического пути надежно воспроизводится раз за разом, и исходные вещества и продукты однозначно соответствуют друг другу. В клетке одновременно функционирует множество метаболических путей. Это похоже на сеть взаимосвязанных водяных мельниц, где вода всегда с максимальным напором течет по пересекающимся каналам. Благодаря оптимальному распределению потока для роста клеток требуется гораздо меньше углерода и энергии, чем если бы поток не был ограничен. Вместо того чтобы беспорядочно участвовать в реакциях и на каждом шагу терять энергию, молекулы проходят определенный путь превращений – благодаря работе ферментов. Клеткам не нужна река, бегущая к морю: для работы их “мельниц” достаточно маленьких струек. С точки зрения энергетики, мощь ферментов заключается не столько в том, что они ускоряют реакции, сколько в том, что они делают это специфично, максимизируя выход.

Что было на заре возникновения жизни, прежде чем появились ферменты? Поток был гораздо сильнее. Чтобы расти – увеличивать количество органических молекул – и размножаться, требовалось гораздо больше энергии и углерода, чем сейчас. Клетки современных организмов минимизируют свои энергетические запросы, но мы знаем, что им до сих пор приходится использовать колоссальные объемы АТФ – имеющей повсеместное хождение энергетической “валюты”. Даже самые простые клетки, которые получают энергию, осуществляя реакцию водорода с углекислым газом, производят в процессе дыхания в 40 раз больше отходов, нежели полезной биомассы. То есть чтобы получился 1 г новой биомассы, должно образоваться минимум 40 г мусора. Жизнь – это побочный эффект главной реакции, при которой происходит выделение энергии. Так дела обстоят и после 4 млрд лет эволюции. И если даже современные клетки производят биомассы в 40 раз меньше, чем отходов, представьте, как могло обстоять дело у примитивных клеток, когда не было никаких ферментов. Фермент увеличивает скорость реакции в миллионы раз. Уберите его – и выход биомассы уменьшится в миллионы раз. Вполне возможно, что первым клеткам приходилось производить 40 т отходов (буквально грузовик), чтобы создать 1 г живой материи. Если продолжить сравнение потоков углерода и энергии с потоками воды, то первые клетки были вынуждены устраивать настоящее цунами, чтобы колеса их “мельниц” вертелись.

Вопрос о масштабах энергетических затрат имеет смысл при обсуждении всех аспектов происхождения жизни, однако он редко рассматривается достаточно подробно. Учение о происхождении жизни получило экспериментальное развитие в 1953 году, когда был поставлен знаменитый эксперимент Миллера – Юри. В том же году была опубликована статья Уотсона и Крика о структуре ДНК. Влияние двух этих работ на научный мир оказалось огромным. Область исследований происхождения жизни будто накрыло тенью от крыльев двух громадных летучих мышей. В некотором отношении тень подействовала благотворно, но были и печальные последствия. Великолепная сама по себе работа Миллера – Юри утвердила концепцию “первичного бульона”, занимавшую умы двух поколений ученых. А стараниями Уотсона и Крика в центре науки о живом оказалась генетическая информация и ДНК. Им, несомненно, принадлежат ключевые роли в происхождении жизни, но такое увлечение репликацией и происхождением естественного отбора отвлекло ученых от других важных вещей, например от изучения роли энергии.

В 50-х годах в лаборатории нобелевского лауреата Гарольда Юри работал талантливый аспирант Стэнли Миллер. В 1953 году в рамках эксперимента он пропускал электрические разряды через колбу, содержащую пары воды и смесь восстановленных (обогащенных электронами) газов. Электрические разряды имитировали молнии, а состав газовой смеси был приближен к атмосфере Юпитера. В то время считалось, что атмосфера Юпитера похожа на атмосферу древней Земли: богата водородом, метаном и аммиаком[34]. Результаты эксперимента оказались поразительными: Миллеру удалось синтезировать несколько аминокислот – молекул, которые являются структурными единицами белков и выполняют в клетках важнейшие функции. Проблема происхождения жизни показалась неожиданно простой. В начале 50-х годов это взволновало всех гораздо сильнее, чем двойная спираль Уотсона и Крика, сначала не вызвавшая интереса. Миллер, напротив, стал знаменитостью. Его портрет в 1953 году даже появился на обложке журнала “Тайм”. Его работа оказалась весьма плодотворной. Она по-прежнему не теряет своей значимости, так как это первая экспериментальная проверка гипотезы, относящейся к происхождению жизни: будто разряды молний, проходя через атмосферу восстановленных газов, способны порождать “строительные фрагменты”, входящие в состав клеток. До появления первых организмов эти предшественники могли накапливаться в океанах, постепенно превращая их в “первичный бульон”: обогащенный раствор, содержащий органические молекулы.

Хотя сначала открытие Уотсона и Крика мало кого впечатлило, постепенно заклинание “дезоксирибонуклеиновая кислота” стало действовать. Для многих понятие “жизнь” сводится к информации, записанной в ДНК. Согласно такому представлению, происхождение жизни – это происхождение информации, без которой, разумеется, невозможна эволюция под действием естественного отбора. Происхождение информации, в свою очередь, сводится к вопросу о происхождении репликации, то есть о том, как появились первые репликаторы – молекулы, способные создавать копии самих себя. ДНК слишком сложно устроена, поэтому не годится в первичные репликаторы, но РНК (рибонуклеиновая кислота) – ее более простой и реакционноспособный предшественник – вполне подходит на эту роль. РНК – главное звено на пути от ДНК к белкам, она служит катализатором белкового синтеза, а также матрицей, на которой строится белок. Поскольку РНК способна функционировать и как матрица (подобно ДНК), и как катализатор (подобно белкам), можно предположить, что в первичном РНК-мире она служила предшественником белков и ДНК. Но откуда взялись все нуклеотиды: звенья, которые, соединяясь в цепочки, формируют РНК? Из “первичного бульона” – откуда же еще! Конечно, формирование РНК не обязательно происходило в “первичном бульоне”, но это наиболее простое предположение, позволяющее избежать сложных вопросов, связанных с термодинамикой[35] и геохимией, которые встают при обсуждении других вариантов. Что ж, закроем глаза на слишком сложные вопросы, а с остальными разберутся доблестные молекулярные биологи. Если в последние 60 лет что-нибудь и объединяло ученых, работающих над проблемой происхождения жизни, то это концепция “первичного бульона”. В соответствии с ней, “первичный бульон” дал начало РНК-миру. Простые репликаторы постепенно эволюционировали, усложнялись, начали кодировать метаболические ферменты и, наконец, породили мир ДНК, белков и клеток, с которым мы имеем дело сейчас. Согласно этому воззрению, жизнь представляет собой информацию, которая со временем становится все сложнее.


Конец ознакомительного фрагмента. Купить книгу

34

Согласно современным представлениям, основанным на химическом анализе горных пород и кристаллов циркона, атмосфера древней Земли была относительно нейтральной и состояла в основном из двуокиси углерода, азота и паров воды, подобно вулканическим газам.

35

“Первичный бульон” в термодинамическом отношении подходит плохо, потому что образование нуклеотидов и их соединение в РНК сопровождаются выделением воды, а в водном растворе это невыгодно. – Прим. науч. ред.

Вопрос жизни. Энергия, эволюция и происхождение сложности

Подняться наверх