Читать книгу Thermal Food Engineering Operations - NITIN KUMAR - Страница 33
References
Оглавление1. Antonio Vicente and Ines Alexandra Castro. (2007). Novel thermal Processing Technologies. In Advances in Thermal and Non Thermal Food Preservation (pp. 99–130).
2. Aguilar-Reynosa, A., Romani, A., Rodriguez-Jasso, R. M., Aguilar, C. N., Garrote, G., & Ruiz, H. A. (2017). Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview. Energy Conversion and Management, 136, 50-65.
3. Álvarez, A., Fayos-Fernández, J., Monzó-Cabrera, J., Cocero, M. J., & Mato, R. B. (2017). Measurement and correlation of the dielectric properties of a grape pomace extraction media. Effect of temperature and composition. Journal of Food Engineering, 197, 98-106.
4. Aydogdu, A., Sumnu, G., & Sahin, S. (2015). Effects of microwave-infrared combination drying on quality of eggplants. Food and Bioprocess Technology, 8(6), 1198-1210.
5. Bal, L. M., Kar, A., Satya, S., & Naik, S. N. (2010). Drying kinetics and effective moisture diffusivity of bamboo shoot slices undergoing microwave drying. International Journal of Food Science & Technology, 45(11), 2321-2328.
6. Barba, F. J., Zhu, Z., Koubaa, M., Sant’Ana, A. S., & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by- products: A review. Trends in Food Science and Technology, 49, 96–109. https://doi.org/10.1016/j.tifs.2016.01.006.
7. Bórquez, R., Melo, D., & Saavedra, C. (2015). Microwave–vacuum drying of strawberries with automatic temperature control. Food and Bioprocess Technology, 8(2), 266-276.
8. Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing—A review. Food Research International, 52(1), 243-261.
9. Choi, Y. S., Hwang, K. E., Jeong, T. J., Kim, Y. B., Jeon, K. H., Kim, E. M., ... & Kim, C.J. (2016). Comparative study on the effects of boiling, steaming, grilling, microwaving and superheated steaming on quality characteristics of marinated chicken steak. Korean Journal for Food Science of Animal Resources, 36(1), 1.
10. Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innovative Food Science and Emerging Technologies, 41, 357–377. https://doi.org/10.1016/j.ifset.2017.04.016
11. Chemat, F., & Cravotto, G. (Eds.). (2012). Microwave-assisted extraction for bioactive compounds: theory and practice (Vol. 4). Springer Science & Business Media.
12. Chemat, F., & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics sonochemistry, 18(4), 813-835.
13. Chen, F., Zhang, X., Zhang, Q., Du, X., Yang, L., Zu, Y., & Yang, F. (2016). Simultaneous synergistic microwave–ultrasonic extraction and hydrolysis for preparation of trans-resveratrol in tree peony seed oil-extracted residues using imidazolium-based ionic liquid. Industrial Crops and Products, 94, 266-280.
14. Chen, Z., Li, Y., Wang, L., Liu, S., Wang, K., Sun, J., & Xu, B. (2017). Evaluation of the possible non-thermal effect of microwave radiation on the inactivation of wheat germlipase. Journal of Food Process Engineering, 40(4), e12506.
15. Clodoveo, M. L. (2013). An overview of emerging techniques in virgin olive oil extraction process: strategies in the development of innovative plants. Journal of Agricultural Engineering, 44(2s), 297–305. https://doi.org/10.4081/jae.2013.s2.e60
16. Clodoveo, M. L., Dipalmo, T., Rizzello, C. G., Corbo, F., & Crupi, P. (2016). Emerging technology to develop novel red winemaking practices: An overview. Innovative Food Science and Emerging Technologies, 38, 41–56. https://doi.org/10.1016/j.ifset.2016.08.020
17. De La Vega-Miranda, B., Santiesteban-Lopez, N. A., Lopez-Malo, A., & Sosa-Morales,
18. M. E. (2012). Inactivation of Salmonella Typhimurium in fresh vegetables using water- assisted microwave heating. Food Control, 26(1), 19-22.
19. Duan, X., Liu, W. C., Ren, G. Y., Liu, L. L., & Liu, Y. H. (2016). Browning behavior of button mushrooms during microwave freeze-drying. Drying Technology, 34(11), 1373-1379.
20. E.E. Tănase, A.C. Miteluț, M.E. Popa, G. A. Ștefănoiu and M. D. (2015). Radio frequency heating for food safety and preservation - State of the art. https://www.researchgate.net/publication/284323081_Radio_frequency_heating_for_food_safety_and_preservation_-_State_of_the_art
21. Ekezie, F. G. C., Sun, D. W., Han, Z., & Cheng, J. H. (2017). Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments. Trends in Food Science & Technology, 67, 58-69.
22. Gavahian, M., Sastry, S., Farhoosh, R., & Farahnaky, A. (2020). Ohmic heating as a promising technique for extraction of herbal essential oils: Understanding mechanisms, recent findings, and associated challenges. In Advances in Food and Nutrition Research Vol. 91, pp. 227-273.
23. Gavahian, M., Tiwari, B. K., Chu, Y. H., Ting, Y., & Farahnaky, A. (2019). Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations. Trends in Food Science & Technology, 86, 328-339.
24. Gong, C., Zhao, Y., Zhang, H., Yue, J., Miao, Y., & Jiao, S. (2019). Investigation of radio frequency heating as a dry-blanching method for carrot cubes. Journal of Food Engineering, 245, 53-56.
25. Gunasekaran, S., & Yang, H. W. (2007). Effect of experimental parameters on temperature distribution during continuous and pulsed microwave heating. Journal of Food Engineering, 78(4), 1452–1456. https://doi.org/10.1016/j.jfoodeng.2006.01.017
26. Guo, C., Mujumdar, A. S., & Zhang, M. (2019). New development in radio frequency heating for fresh food processing: A review. Food Engineering Reviews, 11(1), 29-43.
27. Guo, Q., Sun, D. W., Cheng, J. H., & Han, Z. (2017). Microwave processing techniques and their recent applications in the food industry. Trends in Food Science & Technology, 67, 236-247.
28. Horuz, E., & Maskan, M. (2015). Hot air and microwave drying of pomegranate (Punica granatum L.) arils. Journal of Food Science and Technology, 52(1), 285-293.
29. Huang, E., & Mittal, G. S. (1995). Meatball cooking - modeling and simulation. Journal of Food Engineering, 24(1), 87–100. https://doi.org/10.1016/0260-8774(94)P1610-A
30. Jiang, H., Zhang, M., Mujumdar, A. S., & Lim, R. X. (2013). Analysis of temperature distribution and SEM images of microwave freeze drying banana chips. Food and Bioprocess Technology, 6(5), 1144-1152.
31. Jiang, H., Zhang, M., Mujumdar, A. S., & Lim, R. X. (2016). Drying uniformity analysis of pulse-spouted microwave–freeze drying of banana cubes. Drying Technology, 34(5), 539-546.
31. Jiao, Y., Tang, J., Wang, Y., & Koral, T. L. (2018). Radio-frequency applications for food processing and safety. Annual Review of Food Science and Technology, 9, 105-127.
32. Jouquand, C., Tessier, F. J., Bernard, J., Marier, D., Woodward, K., Jacolot, P., ... & Laguerre, J. C. (2015). Optimization of microwave cooking of beef burgundy in terms of nutritional and organoleptic properties. LWT-Food Science and Technology, 60(1), 271-276.
33. Kappe, C. O. (2013). How to measure reaction temperature in microwave-heated transformations. Chemical Society Reviews, 42(12), 4977-4990.
34. Kaur, N., & Singh, A. K. (2016). Ohmic heating: concept and applications—a review. Critical Reviews in Food Science and Nutrition, 56(14), 2338-2351.
35. Kim, J. E., Oh, Y. J., Won, M. Y., Lee, K. S., & Min, S. C. (2017). Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiology, 62, 112-123.
36. Knoerzer, K., Juliano, P., & Smithers, G. (2016). Innovative Food Processing Technologies: Extraction, Separation, Component Modification and Process Intensification. In Innovative Food Processing Technologies: Extraction, Separation, Component Modification and Process Intensification. Elsevier Inc.
37. Koutchma, T., Popović, V., Ros-Polski, V., & Popielarz, A. (2016). Effects of Ultraviolet Light and High-Pressure Processing on Quality and Health-Related Constituents of Fresh Juice Products. Comprehensive Reviews in Food Science and Food Safety, 15(5), 844–867. https://doi.org/10.1111/1541-4337.12214.
38. Kowalski, S. J., Pawłowski, A., Szadzińska, J., Łechtańska, J., & Stasiak, M. (2016). High power airborne ultrasound assist in combined drying of raspberries. Innovative Food Science & Emerging Technologies, 34, 225-233.
39. Krishnamurthy, K., Khurana, H. K., Soojin, J., Irudayaraj, J., & Demirci, A. (2008). Infrared Heating in Food Processing: An Overview. Comprehensive Reviews in Food Science and Food Safety, 7(1), 2–13. https://doi.org/10.1111/j.1541-4337.2007.00024.x.
40. Kumar, C., Saha, S., Sauret, E., Karim, A., & Gu, Y. (2016). Mathematical modelling of heat and mass transfer during Intermittent Microwave-Convective Drying (IMCD) of food materials. In Proceedings of the 10th Australasian Heat and Mass Transfer Conference: Selected, Peer Reviewed Papers: (pp. 171-176). School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology.
41. Li, R., Huang, L., Zhang, M., Mujumdar, A. S., & Wang, Y. C. (2014). Freeze drying of apple slices with and without application of microwaves. Drying Technology, 32(15), 1769-1776.
42. Liu, Z., Qiao, L., Yang, F., Gu, H., & Yang, L. (2017). Brönsted acidic ionic liquid based ultrasound-microwave synergistic extraction of pectin from pomelo peels. International Journal of Biological Macromolecules, 94, 309-318.
43. Lind, I. (1991). The measurement and prediction of thermal properties of food during freezing and thawing - A review with particular reference to meat and dough. In Journal of Food Engineering (Vol. 13, Issue 4, pp. 285– 319). Elsevier. https://doi.org/10.1016/0260-8774(91)90048-W.
44. Lopez-Iturri, P., de Miguel-Bilbao, S., Aguirre, E., Azpilicueta, L., Falcone, F., & Ramos, V. (2015). Estimation of radiofrequency power leakage from microwave ovens for dosimetric assessment at nonionizing radiation exposure levels. BioMed Research International, 2015.
45. Lung, R. B., Masanet, E., & Mckane, A. (2006). The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry. In 2006 Industrial Energy Technology ConferenceProceedings, New Orleans, LA, 05/10-11/2008. COLLABORATION-ResourceDynamicsCorporation/ Virginia. https://digital.library.unt.edu/ark:/67531/metadc898508/.
46. Makroo, H. A., Rastogi, N. K., & Srivastava, B. (2020). Ohmic heating assisted inactivation of enzymes and microorganisms in foods: A review. Trends in Food Science & Technology, 97, 451-465.
47. Marszałek, K., Mitek, M., & Skąpska, S. (2015). Effect of continuous flow microwave and conventional heating on the bioactive compounds, colour, enzymes activity, microbial and sensory quality of strawberry purée. Food and Bioprocess Technology, 8(9), 1864-1876.
48. Ma, Y., Liu, S., Wang, Y., Adhikari, S., Dempster, T. A., & Wang, Y. (2019). Direct biodiesel production from wet microalgae assisted by radio frequency heating. Fuel, 256, 115994.
49. Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E. G., & Bermúdez, J. M. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology, 91(1), 1-8.
50. Mohammad Reza Zareifard. (2014, January). Electrical conductivity data for foods. |. Ohmic Heating in Food Processing. https://www.researchgate.net/publication/280532621_Electrical_conductivity_data_for_foods
51. Moreno-Vilet, L., Hernández-Hernández, H. M., & Villanueva-Rodríguez, S. J. (2018). Current status of emerging food processing technologies in Latin America: Novel thermal processing. Innovative Food Science and Emerging Technologies, 50, 196–206. https://doi.org/10.1016/j.ifset.2018.06.013.
52. Musto, M., Faraone, D., Cellini, F., & Musto, E. (2014). Changes of DNA quality and meat physicochemical properties in bovine supraspinatus muscle during microwave heating. Journal of the Science of Food and Agriculture, 94(4), 785-791.
53. Nowak, D., & Lewicki, P. P. (2004). Infrared drying of apple slices. Innovative Food Science and Emerging Technologies, 5(3), 353–360. https://doi.org/10.1016/j.ifset.2004.03.003
54. Ohlsson, T., & Bengtsson, N. (Eds.). (2003). Minimal processing technologies in the food industry. CRC.
55. Ozkahraman, B. C., Sumnu, G., & Sahin, S. (2016). Effect of different flours on quality of legume cakes to be baked in microwave-infrared combination oven and conventional oven. Journal of Food Science and Technology, 53(3), 1567-1575.
56. Ozkoc, S. O., & Seyhun, N. (2015). Effect of gum type and flaxseed concentration on quality of gluten-free breads made from frozen dough baked in infrared-microwave combination oven. Food and Bioprocess Technology, 8(12), 2500-2506.
57. Öztürk, S., Şakıyan, Ö., & Özlem Alifakı, Y. (2017). Dielectric properties and microwave and infrared-microwave combination drying characteristics of banana and kiwifruit. Journal of Food Process Engineering, 40(3), e12502.
58. Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non- thermal technologies in food processing. Food Research International, 43(7), 1936–1943. https://doi.org/10.1016/j.foodres.2009.09.013
59. Piyasena, P., Dussault, C., Koutchma, T., Ramaswamy, H. S., & Awuah, G. B. (2003). Radio frequency heating of foods: principles, applications and related properties—a review. Critical Reviews in Food Science and Nutrition, 43(6), 587-606.
60. Pradeep, P., Abdullah, S. A., Choi, W., Jun, S., Oh, S., & Ko, S. (2013). Potentials of microwave heating technology for select food processing applications-a brief overview and update. Journal of Food Processing and Technology, 4(11).
61. Priyadarshini, A., Rayaguru, K., & Nayak, P. K. (2020). Influence of Ohmic Heating on Fruits and Vegetables: A Review. Journal of Critical Reviews, 7(19), 1952-1959.
62. Rahman, M. S. (2007). Handbook of Food Preservation. In Food Science and Technology. https://doi.org/10.1017/CBO9781107415324.004
63. Richardson, P. (2001). Thermal technologies in food processing. In Food Science and Technology. https://doi.org/10.1017/CBO9781107415324.004.
64. S.-S. Kim, D.-H. K. (2017). Synergistic effect of carvacrol and ohmic heating for inactivation of E. coli O157_H7, S. Typhimurium, L. monocytogenes, and MS-2 bacteriophage in salsa _ Elsevier Enhanced Reader.pdf. Food Control, 300–305.
65. Sensoy, I., & Sastry, S. K. (2007). Ohmic blanching of mushrooms. Journal of Food Process Engineering, 27(1), 1–15. https://doi.org/10.1111/j.1745-4530.2004.tb00619.x.
66. Si, X., Chen, Q., Bi, J., Yi, J., Zhou, L., & Wu, X. (2016). Infrared radiation and microwave vacuum combined drying kinetics and quality of raspberry. Journal of Food Process Engineering, 39(4), 377-390.
67. Song, Y., Wu, L., Li, N., Hu, M., & Wang, Z. (2015). Utilization of a novel microwave-assisted homogeneous ionic liquid microextraction method for the determination of Sudan dyes in red wines. Talanta, 135, 163-169.
68. Soysal, Y., Arslan, M., & Keskin, M. (2009). Intermittent microwave-convective air drying of oregano. Food Science and Technology International, 15(4), 397-406.
69. Ştefănoiu, G. A., Tănase, E. E., Miteluţ, A. C., & Popa, M. E. (2016). Unconventional treatments of food: Microwave vs. Radiofrequency. Agriculture and Agricultural Science Procedia, 10, 503-510.
70. Stephen, N. M., Shakila, R. J., Jeyasekaran, G., & Sukumar, D. (2010). Effect of different types of heat processing on chemical changes in tuna. Journal of Food Science and Technology, 47(2), 174-181.
71. Sun, D. W. (2005). Emerging technologies for food processing. Elsevier.
72. Tang, J. (2015). Unlocking Potentials of Microwaves for Food Safety and Quality. In Journal of Food Science (Vol. 80, Issue 8, pp. E1776–E1793). https://doi.org/10.1111/1750-3841.12959
73. Tao, Y., & Sun, D. W. (2015). Enhancement of food processes by ultrasound: a review. Critical Reviews in Food Science and Nutrition, 55(4), 570-594.
74. Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: a novel non-thermal technology for food processing. Food Biophysics, 10(1), 1-11.
75. Thomas Ohlsson and Nils Bengtsson. (2002). Minimal Processing Technologies in the Food Industry. In Minimal Processing Technologies in the Food Industry. https://doi.org/10.1201/9781439823132
76. Uysal, N., Sumnu, G., & Sahin, S. (2009). Optimization of microwave–infrared roasting of hazelnut. Journal of Food Engineering, 90(2), 255-261.
77. Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials-A review. Food and Bioprocess Technology, 3(2), 161–171. https://doi.org/10.1007/s11947-008-0136-0
78. Valero, A., Cejudo, M., & García-Gimeno, R. M. (2014). Inactivation kinetics for Salmonella Enteritidis in potato omelet using microwave heating treatments. Food Control, 43, 175-182.
79. Valerie Orsat & Vijaya G.S. Raghavan. (2005). Radio frequency processing. Emerging Technologies for Food Processing, 445-468. https://doi.org/10.1016/B978-012676757-5/50019-0
80. Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry, 97, 159-178.
81. Wang, S., Luechapattanaporn, K., & Tang, J. (2008). Experimental methods for evaluating heating uniformity in radio frequency systems. Biosystems Engineering, 100(1), 58–65. https://doi.org/10.1016/j.biosystemseng.2008.01.011
82. Wongsa-Ngasri, P. (2004). Ohmic heating of biomaterials: Peeling and effects of rotating electric field. In ProQuest Dissertations and Theses. https://search.proquest.com/docview/305140014?accountid=27575
83. Won, M. Y., Lee, S. J., & Min, S. C. (2017). Mandarin preservation by microwave- powered cold plasma treatment. Innovative Food Science & Emerging Technologies, 39, 25-32.
84. Zielinska, M., & Michalska, A. (2016). Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry, 212, 671-680.
*Corresponding author: amritapreetam92@gmail.com