Читать книгу Thermal Food Engineering Operations - NITIN KUMAR - Страница 58

References

Оглавление

1. J. P. P. M. Smelt and S. Brul, “Thermal Inactivation of Microorganisms,” Crit. Rev. Food Sci. Nutr., vol. 54, no. 10, pp. 1371–1385, 2014, doi: 10.1080/10408398.2011.637645.

2. E. Ağçam, A. Akyildiz, and B. Dündar, “Thermal Pasteurization and Microbial Inactivation of Fruit Juices,” in Fruit Juices: Extraction, Composition, Quality and Analysis, 2018.

3. J. Van Impe et al., “State of the art of nonthermal and thermal processing for inactivation of micro-organisms,” J. Appl. Microbiol., vol. 125, no. 1, pp. 16–35, 2018, doi: 10.1111/jam.13751.

4. C. Jiménez-Sánchez, J. Lozano-Sánchez, A. Segura-Carretero, and A. Fernández-Gutiérrez, “Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications,” Crit. Rev. Food Sci. Nutr., vol. 57, no. 3, pp. 501–523, 2017, doi: 10.1080/10408398.2013.867828.

5. X. Li and M. Farid, “A review on recent development in non-conventional food sterilization technologies,” Journal of Food Engineering, vol. 182. 2016, doi: 10.1016/j.jfoodeng.2016.02.026.

6. P. Mañas and R. Pagán, “Microbial inactivation by new technologies of food preservation,” J. Appl. Microbiol., vol. 98, no. 6, pp. 1387–1399, 2005, doi: 10.1111/j.1365-2672.2005.02561.x.

7. S. Roohinejad, M. Koubaa, A. S. Sant’Ana, and R. Greiner, “Mechanisms of microbial inactivation by emerging technologies,” in Innovative technologies for food preservation: Inactivation of spoilage and pathogenic microorganisms, 2018.

8. C. N. Horita, R. C. Baptista, M. Y. R. Caturla, J. M. Lorenzo, F. J. Barba, and A. S. Sant’Ana, “Combining reformulation, active packaging and non-thermal post-packaging decontamination technologies to increase the microbiological quality and safety of cooked ready-to-eat meat products,” Trends in Food Science and Technology, vol. 72. 2018, doi: 10.1016/j.tifs.2017.12.003.

9. J. B. Portela et al., “Predictive model for inactivation of salmonella in infant formula during microwave heating processing,” Food Control, vol. 104, 2019, doi: 10.1016/j.foodcont.2019.05.006.

10. D. Bermúdez-aguirre, T. Mobbs, and G. V Barbosa-cánovas, “Ultrasound Technologies for Food and Bioprocessing,” pp. 65–105, 2011, doi: 10.1007/ 978-1-4419-7472-3.

11. B. H. Lado and A. E. Yousef, “Alternative food-preservation technologies: Efficacy and mechanisms,” Microbes and Infection, vol. 4, no. 4. 2002, doi: 10.1016/S1286-4579(02)01557-5.

12. S. Gaillard, I. Leguerinel, and P. Mafart, “Model for combined effects of temperature, pH and water activity on thermal inactivation of Bacillus cereus spores,” J. Food Sci., vol. 63, no. 5, 1998, doi: 10.1111/j.1365-2621.1998. tb17920.x.

13. E. L. Dufort, M. R. Etzel, and B. H. Ingham, “Thermal processing parameters to ensure a 5-log Reduction of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in Acidified Tomato-based Foods,” Food Prot. Trends, vol. 37, no. 6, pp. 409–418, 2017.

14. F. J. Barba, M. Koubaa, L. do Prado-Silva, V. Orlien, and A. de S. Sant’Ana, “Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review,” Trends in Food Science and Technology, vol. 66. 2017, doi: 10.1016/j.tifs.2017.05.011.

15. R. N. Pereira and A. A. Vicente, “Environmental impact of novel thermal and non-thermal technologies in food processing,” Food Res. Int., vol. 43, no. 7, 2010, doi: 10.1016/j.foodres.2009.09.013.

16. J. P. Huertas et al., “High heating rates affect greatly the inactivation rate of Escherichia coli,” Front. Microbiol., vol. 7, no. AUG, 2016, doi: 10.3389/ fmicb.2016.01256.

17. W. L. Nicholson, N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow, “Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments,” Microbiol. Mol. Biol. Rev., vol. 64, no. 3, 2000, doi: 10.1128/ mmbr.64.3.548-572.2000.

18. L. da Cruz Cabral, V. Fernández Pinto, and A. Patriarca, “Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods,” International Journal of Food Microbiology, vol. 166, no. 1. 2013, doi: 10.1016/j.ijfoodmicro.2013.05.026.

19. M. C. Pina-Pérez, A. Rivas, A. Martínez, and D. Rodrigo, “Effect of thermal treatment, microwave, and pulsed electric field processing on the antimicrobial potential of açaí (Euterpe oleracea), stevia (Stevia rebaudiana Bertoni), and ginseng (Panax quinquefolius L.) extracts,” Food Control, vol. 90, 2018, doi: 10.1016/j.foodcont.2018.02.022.

20. A. Rodriguez-Palacios and J. T. LeJeune, “Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile,” Appl. Environ. Microbiol., vol. 77, no. 9, 2011, doi: 10.1128/AEM.01589-10.

21. Evelyn and F. V. M. Silva, “Resistance of Byssochlamys nivea and Neosartorya fischeri mould spores of different age to high pressure thermal processing and thermosonication,” J. Food Eng., vol. 201, 2017, doi: 10.1016/j. jfoodeng.2017.01.007.

22. D. Millan-Sango, A. McElhatton, and V. P. Valdramidis, “Determination of the efficacy of ultrasound in combination with essential oil of oregano for the decontamination of Escherichia coli on inoculated lettuce leaves,” Food Res. Int., vol. 67, 2015, doi: 10.1016/j.foodres.2014.11.001.

23. A. Métris, S. M. George, B. M. Mackey, and J. Baranyi, “Modeling the variability of single-cell lag times for Listeria innocua populations after sublethal and lethal heat treatments,” Appl. Environ. Microbiol., vol. 74, no. 22, 2008, doi: 10.1128/AEM.01237-08.

24. W. Zhao, R. Yang, X. Shen, S. Zhang, and X. Chen, “Lethal and sublethal injury and kinetics of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus in milk by pulsed electric fields,” Food Control, vol. 32, no. 1, 2013, doi: 10.1016/j.foodcont.2012.11.029.

25. S. K. Wimalaratne and M. M. Farid, “Pressure assisted thermal sterilization,” Food Bioprod. Process., vol. 86, no. 4, 2008, doi: 10.1016/j.fbp.2007.08.001.

26. P. Loypimai, A. Moongngarm, P. Chottanom, and T. Moontree, “Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant,” Innov. Food Sci. Emerg. Technol., vol. 27, 2015, doi: 10.1016/j.ifset.2014.12.009.

27. G. Lehrke, L. Hernaez, S. L. Mugliaroli, M. von Staszewski, and R. J. Jagus, “Sensitization of Listeria innocua to inorganic and organic acids by natural antimicrobials,” LWT - Food Sci. Technol., vol. 44, no. 4, 2011, doi: 10.1016/j. lwt.2010.09.016.

28. Z. Xu et al., “Inactivation effects of non-thermal atmospheric-pressure helium plasma jet on staphylococcus aureus biofilms,” Plasma Process. Polym., vol. 12, no. 8, 2015, doi: 10.1002/ppap.201500006.

29. J. Zhu et al., “Combined effect of ultrasound, heat, and pressure on Escherichia coli O157:H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vaccinium corymbosum) juice,” Ultrason. Sonochem., vol. 37, pp. 251–259, 2017, doi: 10.1016/j.ultsonch.2017.01.017.

30. D. Ziuzina, S. Patil, P. J. Cullen, K. M. Keener, and P. Bourke, “Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce,” Food Microbiol., vol. 42, pp. 109–116, 2014, doi: 10.1016/j.fm.2014.02.007.

31. V. D. Farkade, S. Harrison, and A. B. Pandit, “Heat induced translocation of proteins and enzymes within the cell: An effective way to optimize the microbial cell disruption process,” Biochem. Eng. J., vol. 23, no. 3, 2005, doi: 10.1016/j.bej.2005.01.001.

32. A. J. Brodowska, A. Nowak, and K. Śmigielski, “Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview,” Crit. Rev. Food Sci. Nutr., vol. 58, no. 13, 2018, doi: 10.1080/10408398.2017.1308313.

33. M. Salma, S. Rousseaux, A. Sequeira-Le Grand, B. Divol, and H. Alexandre, “Characterization of the Viable but Nonculturable (VBNC) State in Saccharomyces cerevisiae.,” PLoS One, vol. 8, no. 10, 2013, doi: 10.1371/jour nal. pone.0077600.

34. I. Albertos et al., “Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets,” Innov. Food Sci. Emerg. Technol., vol. 44, 2017, doi: 10.1016/j.ifset.2017.07.006.

35. H. Daryaei, A. E. Yousef, and V. M. Balasubramaniam, “Microbiological aspects of high-pressure processing of food: inactivation of microbial vegetative cells and spores,” in Food Engineering Series, 2016.

36. J. Raso, I. Alvarez, S. Condón, and F. J. Sala Trepat, “Predicting inactivation of Salmonella senftenberg by pulsed electric fields,” Innov. Food Sci. Emerg. Technol., vol. 1, no. 1, 2000, doi: 10.1016/S1466-8564(99)00005-3.

37. A. Ait-Ouazzou, P. Mañas, S. Condón, R. Pagán, and D. García-Gonzalo, “Role of general stress-response alternative sigma factors σ S (RpoS) and σ B (SigB) in bacterial heat resistance as a function of treatment medium pH,” Int. J. Food Microbiol., vol. 153, no. 3, pp. 358–364, 2012, doi: 10.1016/j. ijfoodmicro.2011.11.027.

38. M. D. Esteban, A. Aznar, P. S. Fernández, and A. Palop, “Combined effect of nisin, carvacrol and a previous thermal treatment on the growth of Salmonella enteritidis and Salmonella senftenberg,” Food Sci. Technol. Int., vol. 19, no. 4, 2013, doi: 10.1177/1082013212455185.

39. C. Hill, P. D. Cotter, R. D. Sleator, and C. G. M. Gahan, “Bacterial stress response in Listeria monocytogenes: Jumping the hurdles imposed by minimal processing,” in International Dairy Journal, 2002, vol. 12, no. 2–3, doi: 10.1016/S0958-6946(01)00125-X.

40. T. Abee and J. A. Wouters, “Microbial stress response in minimal processing,” Int. J. Food Microbiol., vol. 50, no. 1–2, 1999, doi: 10.1016/ S0168-1605(99)00078-1.

41. G. Cebrián, P. Mañas, and S. Condón, “Comparative resistance of bacterial foodborne pathogens to non-thermal technologies for food preservation,” Frontiers in Microbiology, vol. 7, no. MAY. 2016, doi: 10.3389/ fmicb.2016.00734.

42. A. Chen et al., “Plasma membrane behavior, oxidative damage, and defense mechanism in Phanerochaete chrysosporium under cadmium stress,” Process Biochem., vol. 49, no. 4, 2014, doi: 10.1016/j.procbio.2014.01.014.

43. J. Dai, A. Gupte, L. Gates, and R. J. Mumper, “A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: Extraction methods, stability, anticancer properties and mechanisms,” Food Chem. Toxicol., vol. 47, no. 4, 2009, doi: 10.1016/j.fct.2009.01.016.

44. S. Gao, G. D. Lewis, M. Ashokkumar, and Y. Hemar, “Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria,” Ultrason. Sonochem., vol. 21, no. 1, 2014, doi: 10.1016/j.ultsonch.2013.06.006.

45. L. Han, S. Patil, D. Boehm, V. Milosavljević, P. J. Cullen, and P. Bourke, “Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus,Appl. Environ. Microbiol., vol. 82, no. 2, 2016, doi: 10.1128/AEM.02660-15.

46. A. A. Gabriel, “Inactivation behaviors of foodborne microorganisms in multi-frequency power ultrasound-treated orange juice,” Food Control, vol. 46, 2014, doi: 10.1016/j.foodcont.2014.05.012.

47. V. Trivittayasil, F. Tanaka, and T. Uchino, “Investigation of deactivation of mold conidia by infrared heating in a model-based approach,” J. Food Eng., vol. 104, no. 4, 2011, doi: 10.1016/j.jfoodeng.2011.01.018.

48. E. Eser and H. Ibrahim Ekiz, “Effect of far infrared pre-processing on microbiological, physical and chemical properties of peanuts,” Carpathian J. Food Sci. Technol., vol. 10, no. 1, 2018.

49. S. Wilson, “Development of Infrared Heating Technology for Corn Drying and Decontamination to Maintain Quality and Prevent Mycotoxins,” Theses Diss., 2016, [Online]. Available: https://scholarworks.uark.edu/etd/1542.

50. R. Abdul-Kadir, T. J. Bargman, and J. H. Rupnow, “Effect of Infrared Heat Processing on Rehydration Rate and Cooking of Phaseolus vulgaris (Var. Pinto),” J. Food Sci., vol. 55, no. 5, 1990, doi: 10.1111/j.1365-2621.1990.tb03964.x.

51. N. Staack, L. Ahrné, E. Borch, and D. Knorr, “Effect of infrared heating on quality and microbial decontamination in paprika powder,” J. Food Eng., vol. 86, no. 1, 2008, doi: 10.1016/j.jfoodeng.2007.09.004.

52. L. Eliasson, P. Libander, M. Lövenklev, S. Isaksson, and L. Ahrné, “Infrared Decontamination of Oregano: Effects on Bacillus cereus Spores, Water Activity, Color, and Volatile Compounds,” J. Food Sci., vol. 79, no. 12, 2014, doi: 10.1111/1750-3841.12694.

53. J. W. Ha and D. H. Kang, “Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal action,” Appl. Environ. Microbiol., vol. 81, no. 1, 2015, doi: 10.1128/AEM.01862-14.

54. S. Jun and J. Irudayaraj, “A Dynamic Fungal Inactivation Approach Using Selective Infrared Heating,” Trans. Am. Soc. Agric. Eng., vol. 46, no. 5, 2003, doi: 10.13031/2013.15435.

55. F. G. Chizoba Ekezie, D. W. Sun, Z. Han, and J. H. Cheng, “Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments,” Trends in Food Science and Technology, vol. 67. 2017, doi: 10.1016/j.tifs.2017.05.014.

56. G.-A. Ştefănoiu, E. E. Tănase, A. C. Miteluţ, and M. E. Popa, “Unconventional Treatments of Food: Microwave vs. Radiofrequency,” Agric. Agric. Sci. Procedia, vol. 10, 2016, doi: 10.1016/j.aaspro.2016.09.024.

57. S. Chandrasekaran, S. Ramanathan, and T. Basak, “Microwave food processing-A review,” Food Research International, vol. 52, no. 1. 2013, doi: 10.1016/j.foodres.2013.02.033.

58. P. Lopez-Iturri, S. De Miguel-Bilbao, E. Aguirre, L. Azpilicueta, F. Falcone, and V. Ramos, “Estimation of radiofrequency power leakage from microwave ovens for dosimetric assessment at nonionizing radiation exposure levels,” Biomed Res. Int., vol. 2015, 2015, doi: 10.1155/2015/603260.

59. Q. Guo, D. W. Sun, J. H. Cheng, and Z. Han, “Microwave processing techniques and their recent applications in the food industry,” Trends in Food Science and Technology, vol. 67. 2017, doi: 10.1016/j.tifs.2017.07.007.

60. H. Jiang, M. Zhang, A. S. Mujumdar, and R. X. Lim, “Drying uniformity analysis of pulse-spouted microwave–freeze drying of banana cubes,” Dry. Technol., vol. 34, no. 5, 2016, doi: 10.1080/07373937.2015.1061000.

61. A. Álvarez, J. Fayos-Fernández, J. Monzó-Cabrera, M. J. Cocero, and R. B. Mato, “Measurement and correlation of the dielectric properties of a grape pomace extraction media. Effect of temperature and composition,” J. Food Eng., vol. 197, 2017, doi: 10.1016/j.jfoodeng.2016.11.009.

62. M. Vinatoru, T. J. Mason, and I. Calinescu, “Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials,” TrAC - Trends in Analytical Chemistry, vol. 97. 2017, doi: 10.1016/j.trac.2017.09.002.

63. K. Knoerzer, P. Juliano, and G. Smithers, Innovative Food Processing Technologies: Extraction, Separation, Component Modification and Process Intensification. 2016.

64. G. C. Jeevitha, H. B. Sowbhagya, and H. U. Hebbar, “Application of microwaves for microbial load reduction in black pepper (Piper nigrum L.),” J. Sci. Food Agric., vol. 96, no. 12, 2016, doi: 10.1002/jsfa.7630.

65. M. C. Pina-Pérez, M. Benlloch-Tinoco, D. Rodrigo, and A. Martinez, “Cronobacter sakazakii Inactivation by Microwave Processing,” Food Bioprocess Technol., vol. 7, no. 3, pp. 821–828, 2014, doi: 10.1007/s11947-013-1063-2.

66. S. Kar, A. S. Mujumdar, and P. P. Sutar, “Aspergillus niger inactivation in microwave rotary drum drying of whole garlic bulbs and effect on quality of dried garlic powder,” Dry. Technol., vol. 37, no. 12, 2019, doi: 10.1080/07373937.2018.1517777.

67. P. Piyasena, C. Dussault, T. Koutchma, H. S. Ramaswamy, and G. B. Awuah, “Radio Frequency Heating of Foods: Principles, Applications and Related Properties - A Review,” Critical Reviews in Food Science and Nutrition, vol. 43, no. 6. 2003, doi: 10.1080/10408690390251129.

68. F. Salazar, S. Garcia, M. Lagunas-Solar, Z. Pan, and J. Cullor, “Effect of a heat-spray and heat-double spray process using radiofrequency technology and ethanol on inoculated nuts,” J. Food Eng., vol. 227, 2018, doi: 10.1016/j. jfoodeng.2017.12.017.

69. F. Marra, L. Zhang, and J. G. Lyng, “Radio frequency treatment of foods: Review of recent advances,” Journal of Food Engineering, vol. 91, no. 4. 2009, doi: 10.1016/j.jfoodeng.2008.10.015.

70. S. Ozturk et al., “Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing,” LWT, vol. 111, 2019, doi: 10.1016/j.lwt.2019.04.090.

71. S. Liu et al., “Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies,” J. Food Eng., vol. 217, 2018, doi: 10.1016/j. jfoodeng.2017.08.013.

72. S. Hu, Y. Zhao, Z. Hayouka, D. Wang, and S. Jiao, “Inactivation kinetics for Salmonella typhimurium in red pepper powders treated by radio frequency heating,” Food Control, vol. 85, 2018, doi: 10.1016/j.foodcont.2017.10.034.

73. S. G. Jeong and D. H. Kang, “Influence of moisture content on inactivation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in powdered red and black pepper spices by radio-frequency heating,” Int. J. Food Microbiol., vol. 176, 2014, doi: 10.1016/j.ijfoodmicro.2014.01.011.

74. Y. Zhao, W. Zhao, R. Yang, J. Singh Sidhu, and F. Kong, “Radio frequency heating to inactivate microorganisms in broccoli powder,” Food Qual. Saf., vol. 1, no. 1, 2017, doi: 10.1093/fqs/fyx005.

75. M. Mazen Hamoud-Agha and K. Allaf, “Instant Controlled Pressure Drop (DIC) Technology in Food Preservation: Fundamental and Industrial Applications,” in Food Preservation and Waste Exploitation, 2020.

76. T. Allaf, C. Besombes, I. Mih, L. Lefevre, and K. Allaf, “Decontamination of Solid and Powder Foodstuffs using DIC Technology,” in Advances in Computer Science and Engineering, 2011.

77. S. Mounir, C. Besombes, N. Al-Bitar, and K. Allaf, “Study of instant controlled pressure drop DIC treatment in manufacturing snack and expanded granule powder of Apple and Onion,” Dry. Technol., vol. 29, no. 3, 2011, doi: 10.1080/07373937.2010.491585.

78. A. Demirdöven and T. Baysal, “Optimization of ohmic heating applications for pectin methylesterase inactivation in orange juice,” J. Food Sci. Technol., vol. 51, no. 9, 2014, doi: 10.1007/s13197-012-0700-5.

79. W. Il Cho, J. Y. Yi, and M. S. Chung, “Pasteurization of fermented red pepper paste by ohmic heating,” Innov. Food Sci. Emerg. Technol., vol. 34, 2016, doi: 10.1016/j.ifset.2016.01.015.

80. M. Kumar, Jyoti, and A. Hausain, “Effect of ohmic heating of buffalo milk on microbial quality and tesure of paneer,” Asian J. Dairy. Foods Res., vol. 33, no. 1, 2014, doi: 10.5958/j.0976-0563.33.1.003.

81. J. H. Ryang et al., “Inactivation of Bacillus cereus spores in a tsuyu sauce using continuous ohmic heating with five sequential elbow-type electrodes,” J. Appl. Microbiol., vol. 120, no. 1, 2016, doi: 10.1111/jam.12982.

82. S. H. Park, V. M. Balasubramaniam, S. K. Sastry, and J. Lee, “Pressure-ohmicthermal sterilization: A feasible approach for the inactivation of Bacillus amyloliquefaciens and Geobacillus stearothermophilus spores,” Innov. Food Sci. Emerg. Technol., vol. 19, 2013, doi: 10.1016/j.ifset.2013.03.005.

83. R. Somavat, H. M. H. Mohamed, Y. K. Chung, A. E. Yousef, and S. K. Sastry, “Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating,” J. Food Eng., vol. 108, no. 1, 2012, doi: 10.1016/j. jfoodeng.2011.07.028.

84. X. Tian, Q. Yu, W. Wu, and R. Dai, “Inactivation of microorganisms in foods by ohmic heating: A review,” J. Food Prot., vol. 81, no. 7, pp. 1093–1107, 2018, doi: 10.4315/0362-028X.JFP-17-343.

85. R. Pereira, J. Martins, C. Mateus, J. Teixeira, and A. Vicente, “Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating,” Chem. Pap., vol. 61, no. 2, 2007, doi: 10.2478/ s11696-007-0008-5.

86. S. Leizerson and E. Shimoni, “Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice,” J. Agric. Food Chem., vol. 53, no. 9, 2005, doi: 10.1021/jf0481204.

87. I. K. Park, J. W. Ha, and D. H. Kang, “Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice,” BMC Microbiol., vol. 17, no. 1, 2017, doi: 10.1186/s12866-017-1029-z.

88. M. Zell, J. G. Lyng, D. A. Cronin, and D. J. Morgan, “Ohmic cooking of whole beef muscle - Evaluation of the impact of a novel rapid ohmic cooking method on product quality,” Meat Sci., vol. 86, no. 2, 2010, doi: 10.1016/j. meatsci.2010.04.007.

89. M. Morales-de la Peña, L. Salvia-Trujillo, M. A. Rojas-Graü, and O. Martín-Belloso, “Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice-soymilk beverage in chilled storage,” LWT - Food Sci. Technol., vol. 43, no. 6, 2010, doi: 10.1016/j. lwt.2010.01.015.

90. P. Nath, S. J. Kale, and B. Bhushan, “Consumer Acceptance and Future Trends of Non-thermal-Processed Foods,” in Non-thermal Processing of Foods, 2019.

91. A. A. Oduola, R. Bowie, S. A. Wilson, Z. Mohammadi Shad, and G. G. Atungulu, “Impacts of broadband and selected infrared wavelength treatments on inactivation of microbes on rough rice,” J. Food Saf., vol. 40, no. 2, 2020, doi: 10.1111/jfs.12764.

92. C. Venkitasamy et al., “Feasibility of using sequential infrared and hot air for almond drying and inactivation of Enterococcus faecium NRRL B-2354,” LWT, vol. 95, 2018, doi: 10.1016/j.lwt.2018.04.095.

93. Y. Feng, B. Wu, X. Yu, A. E. G. A. Yagoub, F. Sarpong, and C. Zhou, “Effect of catalytic infrared dry-blanching on the processing and quality characteristics of garlic slices,” Food Chem., vol. 266, 2018, doi: 10.1016/j. foodchem.2018.06.012.

94. A. Kapoor and P. P. Sutar, “Finish drying and surface sterilization of bay leaves by microwaves,” 2019, doi: 10.4995/ids2018.2018.7822.

95. H. Patil, N. G. Shah, S. N. Hajare, S. Gautam, and G. Kumar, “Combination of microwave and gamma irradiation for reduction of aflatoxin B1 and microbiological contamination in peanuts (Arachis hypogaea L.),” World Mycotoxin J., vol. 12, no. 3, 2019, doi: 10.3920/WMJ2018.2384.

96. X. Cao et al., “Radiofrequency heating for powder pasteurization of barley grass: antioxidant substances, sensory quality, microbial load and energy consumption,” J. Sci. Food Agric., vol. 99, no. 9, 2019, doi: 10.1002/jsfa.9683.

97. L. Zhang, J. G. Lyng, R. Xu, S. Zhang, X. Zhou, and S. Wang, “Influence of radio frequency treatment on in-shell walnut quality and Staphylococcus aureus ATCC 25923 survival,” Food Control, vol. 102, 2019, doi: 10.1016/j. foodcont.2019.03.030.

98. J. Peng et al., “Freezing as pretreatment in instant controlled pressure drop (DIC) texturing of dried carrot chips: Impact of freezing temperature,” LWT - Food Sci. Technol., vol. 89, 2018, doi: 10.1016/j.lwt.2017.11.009.

99. E. J. Rifna, S. K. Singh, S. Chakraborty, and M. Dwivedi, “Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances,” Food Res. Int., vol. 126, no. September, p. 108654, 2019, doi: 10.1016/j.foodres.2019.108654.

100. Alam, M. S., Kumar, N., & Singh, B. (2018). Development of sweet lime (Citrus limetta Risso) pomace integrated ricebased extruded product: Process optimization. Journal of Agricultural Engineering, 55(1), 47-53.

*Corresponding author: titikshya.sushree@gmail.com

Thermal Food Engineering Operations

Подняться наверх