Читать книгу Nitro-Explosives: A Practical Treatise - P. Gerald Sanford - Страница 21
C_{12}H_{18}O_{9} + 3HNO_{3} = 3H_{2}O + C_{12}H_{15}O_(6}(NO_{3})_{3}.
ОглавлениеThis is equivalent to a gain in weight of 44 per cent. for the tri- nitrate, and 58 per cent. for the tetra-nitrate. The formation of the tetra-nitrate appears to be the limit of nitration of jute fibre. Messrs Cross and Bevan say, "In other words, if we represent the ligno-cellulose molecule by a C_{12} formula, it will contain four hydroxyl (OH) groups, or two less than cellulose similarly represented." It contains 11.5 per cent. of nitrogen. The jute nitrates resemble those of cellulose, and are in all essential points nitrates of ligno-cellulose.
Nitro-jute is used in the composition of the well-known Cooppal Smokeless Powders. Cross and Bevan are of opinion that there is no very obvious advantage in the use of lignified textile fibres as raw materials for explosive nitrates, seeing that a number of raw materials containing cellulose (chiefly as cotton) can be obtained at from £10 to £25 a ton, and yield also 150 to 170 per cent. of explosive material when nitrated (whereas jute only gives 154.4 per cent.), and are in many ways superior to the products obtained from jute. Nitro-lignin, or nitrated wood, is, however, largely used in the composition of a good many of the smokeless powders, such as Schultze's, the Smokeless Powder Co.'s products, and others.
~The Danger Area.~—That portion of the works that is devoted to the actual manufacture or mixing of explosive material is generally designated by the term "danger area," and the buildings erected upon it are spoken of as "danger buildings." The best material of which to construct these buildings is of wood, as in the event of an explosion they will offer less resistance, and will cause much less danger than brick or stone buildings. When an explosion of nitro-glycerine or dynamite occurs in one of these buildings, the sides are generally blown out, and the roof is raised some considerable height, and finally descends upon the blown-out sides. If, on the other hand, the same explosion had occurred in a strong brick or stone building, the walls of which would offer a much larger resistance, large pieces of brickwork would probably have been thrown for a considerable distance, and have caused serious damage to surrounding buildings.
It is also a very good plan to surround all danger buildings with mounds of sand or earth, which should be covered with turf, and of such a height as to be above the roof of the buildings that they are intended to protect (see frontispiece).[A] These mounds are of great value in confining the force of the explosion, and the sides of the buildings being thrown against them are prevented from travelling any distance. In gunpowder works it is not unusual to surround the danger buildings with trees or dense underwood instead of mounds. This would be of no use in checking the force of explosion of the high explosives, but has been found a very useful precaution in the case of gunpowder.
[Footnote A: At the Baelen Factory, Belgium, the danger buildings are erected on a novel plan. They are circular in ground plan and lighted entirely from the roof by means of a patent glass having wire-netting in it, and which it is claimed will not let a splinter fall, even if badly cracked. The mounds are then erected right up against the walls of the building, exceeding them in height by several metres. For this method of construction it is claimed that the force exerted by an explosion will expand itself in a vertical direction ("Report on Visits to Certain Explosive Factories," H.M. Inspectors, 1905).]
In Great Britain it is necessary that all danger buildings should be a specified distance apart; a license also must be obtained. The application for a license must give a plan (drawn to scale) of the proposed factory or magazine, and the site, its boundaries, and surroundings, and distance the building will be from any other buildings or works, &c., also the character, and construction of all the mounds, and nature of the processes to be carried on in the factory or building.[A]
[Footnote A: Explosives Act, 38 Vict. ch. 17.]
[Illustration: FIG. 1.—SECTION OF NITRO-GLYCERINE CONDUIT. a, lid; b, lead lining; c, cinders.]
The selection of a site for the danger area requires some attention. The purpose for which it is required, that is, the kind of explosive that it is intended to manufacture, must be taken into consideration. A perfectly level piece of ground might probably be quite suitable for the purpose of erecting a factory for the manufacture of gun-cotton or gunpowder, and such materials, but would be more or less unsuitable for the manufacture of nitro-glycerine, where a number of buildings are required to be upon different levels, in order to allow of the flow of the liquid nitro- glycerine from one building to another through a system of conduits. These conduits (Fig. 1), which are generally made of wood and lined with lead, the space between the woodwork and the lead lining, which is generally some 4 or 5 inches, being filled with cinders, connect the various buildings, and should slope gently from one to the other. It is also desirable that, as far as possible, they should be protected by earth-work banks, in the same way as the danger buildings themselves. They should also be provided with covers, which should be whitewashed in hot weather.
A great deal of attention should be given to these conduits, and they should be very frequently inspected. Whenever it is found that a portion of the lead lining requires repairing, before cutting away the lead it should be very carefully washed, for several feet on either side of the portion that it is intended to remove, with a solution of caustic soda or potash dissolved in methylated spirit and water, and afterwards with water alone. This decomposes the nitro-glycerine forming glycerine and potassium nitrate. It will be found that the mixed acids attack the lead rather quickly, forming sulphate and nitrate of lead, but chiefly the former. It is on this account that it has been proposed to use pipes made of guttapercha, but the great drawback to their use is that in the case of anything occurring inside the pipes, such as the freezing of the nitro- glycerine in winter, it is more difficult to find it out, and the condition of the inside cannot be seen, whereas in the case of wooden conduits it is an easy matter to lift the lids along the whole length of the conduit.
The buildings which require to be connected by conduits are of course those concerned with the manufacture of nitro-glycerine. These buildings are—(1) The nitrating house; (2) the separating house; (3) the filter house; (4) the secondary separator; (5) the deposit of washings; (6) the settling or precipitation house; and each of these buildings must be on a level lower than the preceding one, in order that the nitro-glycerine or acids may flow easily from one building to the next. These buildings are, as far as possible, best placed together, and away from the other danger buildings, such as the cartridge huts and dynamite mixing houses, but this is not essential.
All danger buildings should be protected by a lightning conductor, or covered with barbed wire, as suggested by Professor Sir Oliver J. Lodge, F.R.S., Professors Zenger, of Prague, and Melsens, of Brussels, and everything possible should be done to keep them as cool as possible in the summer. With this object they should be made double, and the intervening space filled with cinders. The roof also should be kept whitewashed, and the windows painted over thinly with white paint. A thermometer should be suspended in every house. It is very essential that the floors of all these buildings should be washed every day before the work-people leave. In case any nitro-glycerine is spilt upon the floors, after sponging it up as far as possible, the floor should be washed with an alcoholic solution of soda or potash to decompose the nitro-glycerine, which it does according to the equation[A]—