Читать книгу Basic Electrical and Instrumentation Engineering - P. Sivaraman - Страница 3
List of Illustrations
Оглавление1 Chapter 1Figure 1.1 Waveform of AC.Figure 1.2 Waveform of DC.Figure 1.3 Peak to peak voltage of R phase to Y phase. Note: This figure is capt...Figure 1.4 Peak voltage trend. Note: This figure is captured using Dranetz Power...Figure 1.5 Three-phase, Four-wire circuit configuration.Figure 1.6 Three-phase, Three-wire circuit configuration.Figure 1.7 Vector displacement of three phases.Figure 1.8 Phase angle displacement of three-phase voltage waveform in time doma...Figure 1.9 Phase angle displacement of three-phase voltage waveform in angular f...Figure 1.10 Three-phase, four-wire circuit configuration.Figure 1.11 Single-phase, two-wire system.Figure 1.12 40 W bulb connected across 240 V supply.Figure 1.13 Direction of current flow for positive half cycle.Figure 1.14 Direction of current flow for negative half cycle.Figure 1.15 Circuit diagram of single-phase AC supply feeding R Load.Figure 1.16 Current wave shape in kA.Figure 1.17 RMS current trend in kA.Figure 1.18 Time period. Note: This figure is captured using Dranetz Power Quali...Figure 1.19 Voltage frequency.Figure 1.20 Phase angle between voltage and current. Note: This figure is captur...Figure 1.21 Star circuit connection.Figure 1.22 Name plate details of AC generator (Courtesy: Stamford).Figure 1.23 Name plate details of transformer (Courtesy: Toshiba).Figure 1.24 Terminal connection of transformer secondary side - star winding.Figure 1.25 Delta circuit connection.Figure 1.26 Practical connection or forming delta circuit in transformer.Figure 1.27 Practical connection or forming delta circuit in transformer.Figure 1.28 Balanced delta circuit.Figure 1.29 Balanced star circuit.Figure 1.30 Name plate details of three phase induction motor (Courtesy: TECO).Figure 1.31 Star to delta conversion.Figure 1.32 Delta to star conversion.Figure 1.33 Single phase, 240V circuit powering resistive (5 Ω) load.Figure 1.34 Three-phase, 415V balanced circuit powering the resistive load (5 Ω/...Figure 1.35 Three-phase, 415V unbalanced circuit.Figure 1.36 Single phase, 240V circuit.Figure 1.37 Three-phase, 415V balanced circuit.Figure 1.38 Three phase, 415V unbalanced circuit.Figure 1.39 Power triangle.Figure 1.40 Single-phase circuit powering 1000 W focus lamp.Figure 1.41 Three-phase, balanced circuit.Figure 1.42 Three phase, 415V unbalanced circuit.Figure 1.43 Circuit diagram of pure resistive load.Figure 1.44 Voltage and current relation for unity power factor load.Figure 1.45 Schematic diagram.Figure 1.46 Voltage and current wave shape for unity power factor load. Note: Th...Figure 1.47 kW, kVA and PF trend.Figure 1.48 Circuit diagram of ideal inductor.Figure 1.49 Voltage and current relation for lagging power factor load.Figure 1.50 Schematic diagram.Figure 1.51 Instantaneous voltage and current wave shape (R phase) of 5 HP induc...Figure 1.52 Real, apparent power and power factor trend of 5 HP induction motor.Figure 1.53 Circuit diagram for an ideal capacitor.Figure 1.54 Voltage and current relation for leading power factor load.Figure 1.55 Schematic diagram of power distribution.Figure 1.56 Instantaneous voltage and current wave form of capacitor.Figure 1.57 kW, kVA and PF trend for leading PF load.Figure 1.58 Power factor improvement by capacitor bank.Figure 1.59 Power factor improvement by synchronous condensor.Figure 1.60 Linear voltage – current relationship.Figure 1.61 Non-linear voltage – current relationship.Figure 1.62 Current coil.Figure 1.63 Pressure coil.Figure 1.64 Two-Wattmeter method for three-phase power measurement.Figure 1.65 Three-Wattmeter method power measurement.Figure 1.66 General structure of power system.Figure 1.67 Installation of generator at actual site.Figure 1.68 Installation of transformer at actual site.Figure 1.69 Installation of transmission lines 110 kV single circuit.Figure 1.70 Installation of transmission lines 220 kV double circuit.Figure 1.71 Installation of transmission lines.Figure 1.72 Installation of primary distribution line 11 kV single circuit.Figure 1.73 Installation of secondary distribution line 415 V.Figure 1.74 Installation of underground cables in buried cable trench.Figure 1.75 Flow chart of power system protection.Figure 1.76 CTs at 11 kV (Courtesy: Schneider Electric).Figure 1.77 100/1 A CT.Figure 1.78 VTs at 11 kV.Figure 1.79 Instantaneous earth fault relay (Courtesy: Alstom).Figure 1.80 Instantaneous over voltage relay (Courtesy: Areva).Figure 1.81 Installation of SF6 breaker.
2 Chapter 2Figure 2.1 Typical SLD of power system.Figure 2.2 Typical configuration of two-winding transformer.Figure 2.3 Waveform of high voltage side of two-winding transformer.Figure 2.4 Waveform of low voltage side of two-winding transformer.Figure 2.5 Core of three-phase power transformer (Courtesy: Andrew Yule).Figure 2.6 Relationship of B-H curve.Figure 2.7 CGL power transformer laminated core (Courtesy: CGL power transformer...Figure 2.8 Path of eddy current.Figure 2.9 Core-type transformer.Figure 2.10 L shape stamping.Figure 2.11 Core-type transformer.Figure 2.12 E & I shape stamping.Figure 2.13 Typical step-down transformer.Figure 2.14 Flux on the transformer core.Figure 2.15 The ideal transformer.Figure 2.16 Voltage – current relationship of an ideal transformer.Figure 2.17 Phasor diagram.Figure 2.18 Circuit diagram.Figure 2.19 No load equivalent circuit.Figure 2.20 Equivalent circuit of a transformer under load in secondary side.Figure 2.21 Secondary circuit referred to the primary circuit.Figure 2.22 Primary circuit referred to the secondary circuit.Figure 2.23 Approximate equivalent circuit.Figure 2.24 Equivalent circuit.Figure 2.25 Voltage regulation of a transformer.Figure 2.26 Typical name plate rating of a transformer (Courtesy: Voltamp transf...Figure 2.27 Arrangement of a three-phase transformer.Figure 2.28 Star – Star configuration of three-phase transformer.Figure 2.29 Delta – Delta configuration of three-phase transformer.Figure 2.30 Star – Delta configuration of three-phase transformer.Figure 2.31 Delta – Star configuration of three-phase transformer.Figure 2.32 Winding configuration step-down auto transformer.Figure 2.33 Winding configuration step-up auto transformer.Figure 2.34 Typical oil type transformer.Figure 2.35 Typical dry type transformer.Figure 2.36 Typical power transformer.Figure 2.37 Silica gel.Figure 2.38 Cooling tubes.Figure 2.39 Low voltage side bushing of power transformer.Figure 2.40 High voltage side bushing of power transformer.Figure 2.41 Low voltage side – star point earthing of power transformer.Figure 2.42 Conservator tank of distribution transformer.Figure 2.43 Bushing of low voltage side of power transformer.Figure 2.44 Breather with silica gel.
3 Chapter 3Figure 3.1 Construction of the DC machine.Figure 3.2 Armature of the DC machine.Figure 3.3 Typical lap winding.Figure 3.4 Typical simple lap winding.Figure 3.5 Duplex lap winding.Figure 3.6 Typical wave winding.Figure 3.7 Construction of rotor.Figure 3.8 Fleming right-hand rule.Figure 3.9 Relation between the motion and flux.Figure 3.10 Main flux by permanent magnet.Figure 3.11 Flux produced by current carrying conductor.Figure 3.12 Conductor flux is opposed to the main flux.Figure 3.13 Direction of force.Figure 3.14 Fleming left hand.Figure 3.15Figure 3.16 Circuit model.Figure 3.17 Representation of DC generator.Figure 3.18 Circuit diagram of separately excited DC generator.Figure 3.19 DC shunt generator.Figure 3.20 Circuit diagram of DC series generator.Figure 3.21 Long shunt DC compound generator.Figure 3.22 Short shunt compound generator.Figure 3.23 No load characteristics at constant speed.Figure 3.24 No load characteristics for different speed.Figure 3.25 Circuit diagram of separately excited DC generator.Figure 3.26 Open circuit characteristics of separately excited DC generator.Figure 3.27 Load characteristics of separately excited DC generator.Figure 3.28 Internal and external characteristics.Figure 3.29 Circuit diagram of DC shunt generator.Figure 3.30 Internal characteristics.Figure 3.31 External characteristics.Figure 3.32 Circuit diagram of DC series motor.Figure 3.33 Characteristics of Ia or IL or Ise VS terminal voltage (Vt).Figure 3.34 Full load current VS terminal voltage (Vt).Figure 3.35 Winding connection of DC shunt motor.Figure 3.36 Winding connection of DC series motor.Figure 3.37 Long shunt DC compound motor.Figure 3.38 Short shunt compound motor.Figure 3.39 Torque vs. armature current characteristics of a DC shunt motor.Figure 3.40 Speed vs. armature current characteristics of a DC shunt motor.Figure 3.41 Speed vs. torque characteristics of a DC shunt motor.Figure 3.42 Torque vs. armature current characteristics of a DC series motor.Figure 3.43 Speed vs. armature current characteristics of a DC series motor.Figure 3.44 Speed vs. torque characteristics of a DC series motor.Figure 3.45 Torque vs. armature current characteristics of a DC compound motor.Figure 3.46 Speed vs. armature current characteristics of a DC compound motor.Figure 3.47 Speed vs. torque characteristics of a DC compound motor.Figure 3.48 Circuit diagram of three-point starter.Figure 3.49 Circuit diagram of four point starter.Figure 3.50 Circuit diagram of two-point starter.Figure 3.51 Circuit diagram for flux control-based DC shunt motor speed control.Figure 3.52 Speed vs. field current characteristics.Figure 3.53 Circuit diagram for armature voltage control-based DC shunt motor sp...Figure 3.54 Relationship of armature voltage and speed.Figure 3.55 Circuit diagram for applied voltage-based DC shunt motor speed contr...Figure 3.56 Circuit diagram for field diverter-based DC series motor speed contr...Figure 3.57 Characteristics of speed vs. armature current.Figure 3.58 Circuit diagram for armature diverter-based DC series motor speed co...Figure 3.59 Circuit diagram for tapped field-based DC series motor speed control...Figure 3.60 Circuit diagram for series connected field-based DC series motor spe...Figure 3.61 Circuit diagram for parallel connected field-based DC series motor s...Figure 3.62 Circuit diagram for rheostat-based DC series motor speed control.Figure 3.63 Relationship between speed vs. armature current.Figure 3.64 Circuit diagram of applied voltage-based speed control of DC series ...Figure 3.65 Construction of universal motor.
4 Chapter 4Figure 4.1 Construction of stator.Figure 4.2 Typical view of stator of an induction motor.Figure 4.3 Arrangement of squirrel cage rotor.Figure 4.4 Skewed arrangement of squirrel cage rotor.Figure 4.5 Typical skewed arrangement of squirrel cage induction motor.Figure 4.6 Slip ring rotor.Figure 4.7 Typical slip ring induction motor.Figure 4.8 Typical slip ring and carbon brush arrangement.Figure 4.9 Direction of current flow in rotor circuit.Figure 4.10 Direction of current flow in rotor circuit.Figure 4.11 The relation of the rotor, resistance and reactance.Figure 4.12 Torque–Slip characteristics of an induction motor.Figure 4.13 Primary and secondary winding of the three-phase induction motor.Figure 4.14 Circuit diagram of an induction motor as transformer.Figure 4.15 Equivalent circuit diagram of an induction motor.Figure 4.16 Equivalent circuit of a rotor.Figure 4.17 Equivalent circuit.Figure 4.18 Equivalent circuit.Figure 4.19 Construction of the single-phase induction motor.Figure 4.20 Construction of rotor.Figure 4.21 Split-phase induction motor.Figure 4.22 The phase difference (α) between two currents.Figure 4.23 Speed vs. full load torque.Figure 4.24 Circuit diagram of capacitor-start induction motor.Figure 4.25 Voltage and current characteristics.Figure 4.26 Circuit diagram of capacitor-start and capacitor-run induction motor...Figure 4.27 Speed vs. full load torque.Figure 4.28 Construction of shaded-pole motor.Figure 4.29 Speed vs. full load torque.Figure 4.30 Three-phase induction motor with DOL starter.Figure 4.31 Practical DOL starter (Courtesy: Larson and Toubro Limited).Figure 4.32 Circuit diagram of primary resistor or reactor.Figure 4.33 Autotransformer starter.Figure 4.34 Star-Delta starter.Figure 4.35 Slip ring induction motor.Figure 4.36 Speed control of induction motor using auto transformer.Figure 4.37 Speed control of induction motor using primary resistorFigure 4.38 Stator frequency control.Figure 4.39 Schematic diagram of V/F control.Figure 4.40 Typical V/F controller. Courtesy: ABBFigure 4.41 Cascaded type speed control for slip ring induction motor.Figure 4.42 Speed control of slip ring induction motor by external resistance.Figure 4.43 Construction of synchronous motor.Figure 4.44 Step angle of stepper motor.Figure 4.45 Construction of BLDC motor.Figure 4.46 Arrangement of armature winding in the slot.Figure 4.47 Salient pole type rotor.Figure 4.48 Smooth cylindrical type rotor.Figure 4.49 Magnetic field.Figure 4.50 Flux linkage.Figure 4.51 Relationship between the load current and terminal voltage.
5 Chapter 5Figure 5.1 Classification of instruments.Figure 5.2 Tangent Galvanometer (Courtesy: Tangent Galvonometer, Magnetic Field ...Figure 5.3 Relationship of B and Bh.Figure 5.4 Rayleigh’s current balance.Figure 5.5 Analog signal.Figure 5.6 Digital signal.Figure 5.7 Controlling torque due to gravity.Figure 5.8 Spring control.Figure 5.9 Gravity control.Figure 5.10 Time vs. final deflection.Figure 5.11 Air friction damping.Figure 5.12 (a) Fluid friction damping. (b) Fluid friction damping.Figure 5.13 Eddy friction damping.Figure 5.14 D’Arsonval movement.Figure 5.15 DC ammeter.Figure 5.16 Multi-range DC ammeter.Figure 5.17 DC voltmeter.Figure 5.18 Multi-range voltmeter; (i) Parallel connection and (ii) Series conne...Figure 5.19 (a) Basic Ohmmeter Circuit Diagram.Figure 5.19 (b) Series type Ohmmeter. (c) Shunt type Ohmmeter.Figure 5.20 Electrodynamometer.Figure 5.21 Electrodynamometer ammeter circuit.Figure 5.22 Electrodynamometer in power measurement.Figure 5.23 Electrodynamometer Wattmeter.Figure 4.24 DC voltage measurement.Figure 5.25 AC voltage measurement.Figure 5.26 DC and AC voltage measurement.Figure 5.27 (a) and (b) Resistance measurement.Figure 5.28 Block diagram of cathode ray oscilloscope.Figure 5.29 Basic elements of storage mesh CRT.Figure 5.30 The charge pattern on a mesh storage.Figure 5.31 Phosphor storage oscilloscope.Figure 5.32 Images of CRO (Courtesy: Cathode Ray Oscilloscope, Product Type: Bio...Figure 5.33 Block diagram of digital storage oscilloscope.Figure 5.34 Waveform of digital storage oscilloscope.Figure 5.35 Digital storage oscilloscope (Courtesy: Digital Storage Oscilloscope...Figure 5.36 (a) and (b) Waveform of input vs. output.Figure 5.37 Galvonometer name plate (Courtesy: Galvanometer Analog Besto (311/31...Figure 5.38 Galvonometer (Courtesy: Galvanometer - Analog - BESTO (311/312 A)).Figure 5.39 Input vs. output of linearity.Figure 5.40 (a) Span drift. (b) Zero drift.Figure 5.41 Reproducibility.Figure 5.42 Image of stability measuring instruments (Courtesy: Stability Measur...Figure 5.43 Dynamic error.Figure 5.44 Flowchart of types of errors.Figure 5.45 Block diagram of measuring system.Figure 4.46 Block diagram of LVDT.Figure 5.47 Thermocouple.Figure 5.48 Strain gauge.Figure 5.49 Block diagram of transducer.Figure 5.50 Capacitive transducer.Figure 5.51 Parallel plate capacitance.Figure 5.52 Cylindrical capacitive transducer.Figure 5.53 Semicircular capacitive transducer.Figure 5.54 Dielectric placed between two plates.Figure 5.55 Inductive transducer.Figure 5.56 Self-inductance.Figure 5.57 Photoelectric transducer.Figure 5.58 Photoelectric transducer.Figure 5.59 Gas-filled phototube.Figure 5.60 Photo-multiplier tube.Figure 5.61 (a) Photo conductive cell. (b) Symbol.Figure 5.62 Photoconductive cell Illumination characteristics.Figure 5.63 Photovoltaic cell.Figure 5.64 P-N junction solar cell with resistive load.Figure 5.65 Quartz crystal.Figure 5.66 Diagram of piezoelectric transducer.Figure 5.67 Hall effect.Figure 5.68 Measurement of displacement.Figure 5.69 Measurement of current.