Читать книгу Верховный алгоритм: как машинное обучение изменит наш мир - Педро Домингос - Страница 5

Глава 1
Революция машинного обучения

Оглавление

Мы живем в эпоху алгоритмов. Всего поколение-другое назад слово «алгоритм» у большинства людей вызвало бы лишь непонимание. Cегодня алгоритмы проникли во все уголки нашей цивилизации. Они вшиты в ткань повседневной жизни и нашли себе место не только в мобильных телефонах и ноутбуках, но и в автомобилях, квартирах, бытовой технике и игрушках. Так, банк – гигантское хитросплетение алгоритмов, а люди просто слегка регулируют настройки то тут, то там. Алгоритмы составляют расписание полетов, а затем ведут самолеты. Алгоритмы управляют производством, торговлей, снабжением, подсчитывают выручку и занимаются бухгалтерией. Если все алгоритмы вдруг перестанут работать, настанет конец света – такого, каким мы его знаем.

Алгоритм – определенная последовательность инструкций, диктующая компьютеру его действия. Компьютеры состоят из миллиардов крохотных переключателей – транзисторов, и алгоритмы включают и выключают эти транзисторы миллиарды раз в секунду.

Самый простой алгоритм – «нажми переключатель». Положение одного транзистора – одна единица информации: «один», если транзистор включен, и «ноль», если выключен. Единичка где-то в компьютерах банка информирует, превысили ли вы кредит. Еще одна единичка в недрах Управления социального обеспечения сообщает, живы вы или уже умерли.

Второй простейший алгоритм – «соедини два бита». Клод Шеннон, признанный отец теории информации, первым осознал, что включение и выключение транзисторов в ответ на действия других транзисторов – это, в сущности, логический вывод. (Этой теме он посвятил свою дипломную работу в Массачусетском технологическом институте – самую важную дипломную работу в истории.) «Транзистор A включается, только если включены транзисторы B и C» – это крохотное логическое рассуждение. «A включается, когда включен либо B, либо C» – еще одна крупица логики. «A включается всегда, когда выключен B, и наоборот» – третья операция. Хотите верьте, хотите нет, любой алгоритм, как бы сложен он ни был, сводится всего к трем операциям: И, ИЛИ и НЕ. Используя для этих операций специальные символы, можно представить простые алгоритмы в виде диаграмм. Например, если у человека грипп или малярия и ему надо принять лекарство от температуры и головной боли, это можно выразить следующим образом:


Соединяя множество подобных операций, можно составлять очень сложные цепочки логических рассуждений. Люди часто думают, что вся суть компьютеров в вычислениях, но это не так. Сердце компьютеров – логика. Из логики в компьютере состоят и числа, и арифметика, и все остальное. Хотите сложить два числа? Есть комбинация транзисторов, которая это сделает. Хотите победить чемпиона в «Своей игре»? Для этого тоже найдется комбинация (естественно, она будет намного больше).

Однако строить новый компьютер для каждой новой задачи, которая нам придет в голову, было бы невероятно дорого, поэтому современный компьютер представляет собой большую совокупность транзисторов, способных решать много разных задач в зависимости от того, какие из них активны. Микеланджело говорил, что вся его работа – увидеть статую в глыбе мрамора и открыть ее миру, убрав лишнее. Аналогично алгоритмы «отсекают» избыточные транзисторы в компьютере, пока не обнажается нужная функция, будь то автопилот авиалайнера или новый мультфильм студии Pixar.

Алгоритм – не просто произвольный набор инструкций. Чтобы компьютер его выполнил, указания должны быть достаточно точными и однозначными. Например, кулинарный рецепт – это не алгоритм, потому что не задает однозначного порядка действий и не объясняет, что делать на каждом этапе. Например, сколько именно сахара умещается в столовую ложку? Любой человек, который хоть раз пробовал готовить по незнакомому рецепту, знает, что может получиться и восхитительное блюдо, и не пойми что. А алгоритмы всегда дают идентичный результат. При этом, даже если указать в рецепте ровно 15 граммов сахара, это по-прежнему не решает проблему, потому что компьютер не знает ни что такое сахар, ни что такое грамм. Если бы мы захотели запрограммировать робота-повара для выпечки тортов, пришлось бы научить его узнавать сахар на видео, научить брать ложку и так далее (ученые все еще над этим работают). Компьютер должен знать, как выполнять алгоритм – вплоть до включения и выключения конкретных транзисторов, поэтому рецепт готовки очень далек от алгоритма.

С другой стороны, вот вам алгоритм игры в крестики-нолики.

Если вы или ваш противник поставили две отметки на одной линии, ставьте отметку в оставшейся на этой линии клетке.

Если такой ход невозможен, но есть ход, который создаст две линии по две отметки, – делайте его.

Если такой ход невозможен, но центральная клетка свободна, ставьте отметку в ней.

Если такой ход невозможен, но противник поставил отметку в углу, ставьте отметку в противоположном углу.

Если такой ход невозможен, но одна из угловых клеток свободна, ставьте отметку в ней.

Если такой ход невозможен, ставьте отметку в любой пустой клетке.

У этого алгоритма есть одно приятное свойство: он беспроигрышный! Конечно, ему не хватает многих деталей – как доска отображается в памяти компьютера и как это отображение меняется после каждого хода. Например, каждой клетке могут соответствовать два бита: 00 – если клетка пуста, 01 – если в ней поставили нолик и 10 – если крестик. Тем не менее предложенный алгоритм достаточно точен и однозначен, и любой грамотный программист сможет его дописать. Еще полезно не конкретизировать алгоритмы вплоть до отдельных транзисторов, а пользоваться уже существующими алгоритмами как кирпичиками. Их огромное количество, так что есть из чего выбирать.

Алгоритмы предъявляют строгие требования: часто говорят, что по-настоящему понимаешь что-то только тогда, когда можешь выразить это в виде алгоритма (как заметил Ричард Фейнман[9], «я не понимаю того, чего не могу создать»). Уравнения – хлеб насущный физиков и инженеров – на самом деле всего лишь особая разновидность алгоритмов. Например, второй закон Ньютона, который считают самым важным в мире уравнением, гласит, что для вычисления действующей на тело суммарной силы надо массу этого тела умножить на его ускорение. Он также подразумевает, что ускорение – это сила, разделенная на массу, но выведение этого следствия тоже алгоритм. Если теорию в любой научной дисциплине не получается выразить в виде алгоритма, она недостаточно строгая, не говоря уже о том, что ее решение нельзя компьютеризировать, а это всерьез ограничивает сферу ее применения. Ученые строят теории, инженеры изобретают устройства, а специалисты в области информатики создают алгоритмы, которые представляют собой и теории, и устройства одновременно.

Написать алгоритм непросто: есть очень много ловушек, и ни в чем нельзя быть уверенным. Интуитивные предположения вполне могут оказаться ошибочными, и тогда придется искать другой подход. Затем алгоритм надо выразить на понятном компьютеру языке, например Java или Python, и с этого момента алгоритм начнет называться программой. Потом программу надо отладить: найти все до единой ошибки и исправить их, пока компьютер не начнет выполнять ее без запинки. Но когда у вас наконец появится программа, которая умеет делает то, что вам нужно, вы получите все козыри. Компьютер станет послушно выполнять ваши задания миллионы раз со сверхвысокой скоростью. Созданной вами программой сможет пользоваться любой человек в мире. Она даже сделает вас миллиардером, если решенная проблема достаточно важна. Программист – человек, пишущий алгоритмы и кодирующий их, – маленький бог, создающий вселенные по своему желанию. Можно даже сказать, что сам Господь тоже был программистом, ведь в Книге Бытия он творил с помощью слов, а не руками. Речения стали мирами. Сегодня, сидя в кресле перед ноутбуком, вы тоже можете почувствовать себя богом: нарисуйте в воображении Вселенную и сделайте ее реальной. Законы физики соблюдать необязательно.

Со временем информатики начинают опираться на уже проделанную работу и придумывают алгоритмы для все новых процессов. Одни алгоритмы соединяются с другими, чтобы использовать результаты третьих, производя, в свою очередь, еще больше алгоритмов. Каждую секунду миллиарды раз переключаются миллиарды транзисторов в миллиардах компьютеров. Алгоритмы образуют экосистему нового типа – непрерывно растущую и сопоставимую по богатству лишь с самой жизнью.

Однако, как это всегда бывает, в райском саду обитает змей – Монстр Сложности. У него, как у лернейской гидры, много голов. Одна из них – пространственная: количество битов информации, которое алгоритм должен хранить в памяти компьютера. Если алгоритму требуется больше памяти, чем есть в наличии, он бесполезен, и его приходится отбрасывать. У пространственной сложности есть злая сестрица: временная сложность. Сколько будет длиться выполнение алгоритма, то есть сколько раз нужно использовать транзисторы, прежде чем алгоритм даст желаемый результат? Если мы не можем столько ждать, алгоритм снова оказывается бесполезным. Но самая пугающая голова Монстра Сложности – сложность человеческая. Когда алгоритм становится слишком запутанным и непонятным для нашего скромного разума, а взаимодействия между его элементами – слишком многочисленными и обширными, в него начинают вкрадываться ошибки. Человек не в состоянии их отыскать и исправить, поэтому алгоритм не делает то, что от него требуется. Даже если каким-то образом заставить его работать, он окажется неоправданно сложным для пользователя, будет плохо взаимодействовать с другими алгоритмами и порождать все больше проблем.

Специалисты-информатики сражаются с Монстром Сложности каждый день. Когда они проигрывают, сложность прорывается в нашу жизнь. Вы, наверное, и сами замечали, как много было проиграно битв. Тем не менее башня алгоритмов продолжает расти, хотя строить ее все труднее: каждое новое поколение алгоритмов приходится возводить на вершине предшественников, их сложность суммируется. Башня растет и растет, алгоритмы опутывают весь мир, но конструкция становится все более шаткой – как карточный домик, который только и ждет толчка. Мизерная ошибка в алгоритме – и ракета, стоившая миллиард долларов, взрывается на старте, или миллионы людей остаются без электричества. Непредвиденное взаимодействие алгоритмов – и рушится фондовый рынок.

Если программисты – маленькие боги, то Монстр Сложности – его величество Сатана. И мало-помалу он выигрывает войну.

Должен быть способ лучше.

9

Ричард Филлипс Фейнман (Richard Phillips Feynman, 1918–1988) – американский физик, лауреат Нобелевской премии, один из создателей современной квантовой электродинамики, внес существенный вклад в квантовую механику и квантовую теорию поля, его имя носит метод диаграмм Фейнмана.

Верховный алгоритм: как машинное обучение изменит наш мир

Подняться наверх