Читать книгу Southern England - Peter Friend - Страница 14
LANDSCAPE MODIFICATION BY RIVERS
ОглавлениеWeathering of landscape surfaces and the production of soils by the action of rainwater, air and organisms are important factors in shaping landscapes. These processes affect the bedrock when it is very close to the surface, and most of them weaken the material that they work on. This is particularly so when tough silicate rock minerals are altered to soft clay minerals, which are then easily eroded. Freezing and thawing also works to weaken the bedrock as water in cracks freezes and expands, breaking the rocks into fragments.
Whilst weathering is a widespread and general process, most of the other important landscape processes involve the formation of discrete features that we shall call landforms. Rivers result in the formation of a number of important landforms that are described below.
The most important landforms resulting from river processes are the channels of rivers and streams (Fig. 11). When rain falls onto a land surface some of it soaks into the land (forming groundwater), whilst the remainder runs along the surface, collecting in topographical lows and producing stream and river channels. Today, many of Southern England’s river channels tend to be relatively narrow and shallow – only metres or tens of metres in width and less in depth – so they occupy an extremely small percentage of the area that they drain. However, they are still the dominant agents of landscape change, causing downwards and/or sideways erosion as well as acting as conduits to transport the eroded material out of their catchments.
Most river channels develop a sinuous course, becoming curved (or meandering) to varying degrees, or developing a number of channels separated by islands of sediment (becoming braided). The positions of the curves or islands change with time as sediment is shifted downstream, and the position of a river channel will change with time correspondingly.
Because of their ability to erode material and remove the resulting debris, river channels create valleys. The sides of a river valley are referred to as slopes. When a channel cuts downwards the valley sides generally become steeper and slope material (generated by ongoing weathering processes) moves down-slope towards the channel. The material is transported either as small individual fragments or as larger mass flows. Where down-slope movements involve the collapse of large areas of material, the terms landslip or slump are often used. Slope material is then deposited in the channel and removed downstream by the river.
The simplest valleys result from down-cutting by a river or stream to yield a V-shaped profile in cross-section. The gradient of the valley sides depends on the strength of the material that the slopes are composed of in the face of erosion. Stronger materials are more difficult to erode and remove, and so can form steeper slopes than weaker materials. In some areas, the river channel is unable to form valley slopes as the material is too weak to form a noticeable gradient. In the Areas we will be investigating, it is clear that some of the slopes are largely the result of a particularly strong layer in the bedrock resisting erosion as the landscape has developed.
FIG 11. Landforms of rivers.
As the valley develops, its profile can become more complex. In some cases, slopes appear to have retreated across a landscape some distance from the position in which they were initially created by river down-cutting. A river with a wide valley floor is one of the most obvious examples of this, in which movements of the channel across the floor have caused the slopes to retreat as the valley floor has become wider. In some cases, slopes appear to have retreated over many kilometres from the original valley as numerous collapses of the slope took place.
Overall, therefore, the valley profile and the channel course reflect variations in the strength of the material being eroded, and in the strength and flood pattern of the river. Climate changes are likely to have a major effect on the strength of the river by altering the volume of water flowing through the channels. Additionally, the lowering or raising of the channel by Earth movement effects (see Chapter 3) can affect the evolution of the landscape by river processes. For example, both climate change and the vertical movement of the river channel can initiate the formation of river terraces. Different examples of all these river geometries will be discussed in greater detail in the Area descriptions in Chapters 4–8.
Over millions of years, river down-cutting, slope erosion and material transport tend to smooth and lower landscapes until they approximate plains, unless they are raised up again (rejuvenated) by large-scale Earth movements (Chapter 3) or are attacked by a new episode of channel erosion, perhaps due to climate or sea-level change. Southern England generally has a smoothed and lowered landscape, representing hundreds of thousands of years of this river and slope activity.
The branching, map-view patterns of river channels and valleys are an obvious feature of all landscapes. An approach to understanding how this forms is illustrated by a computer-based experiment (Fig. 12) in which a flat surface (plateau or plain) is uplifted along one of its edges, so that it has a uniform slope towards the edge that forms the bottom of the rectangle shown. Rain is then applied uniformly across the surface, causing the formation and down-cutting of channels that erode backwards from the downstream edge. As the experiment continues, the channels and their valleys extend into the uniform sloping surface by headward erosion, resulting in longer valleys, more branches and a greater dissection of the surface by those valleys.
FIG 12. Model showing upstream erosion by tree-like (dendritic) river patterns. (Provided by Dimitri Lague from the work of A. Crave and P. Davy)
As we consider the various Regions and Areas of Southern England, we will summarise the present-day river patterns of each by simplifying the main directions of drainage involved. We will also give an impression of the present-day relative size of the more important rivers by quoting their mean flow rates as estimated in the National River Flow Archive, maintained by the Centre for Ecology and Hydrology at Wallingford.
It seems surprising that today’s often sleepy southern English rivers have been the dominant agent in carving the English landscape. However, even today’s rivers can become surprisingly violent in what are often described as hundred-or thousand-year floods. Floods in the past were certainly more violent at times than those of today, particularly towards the ends of cold episodes, when melting of ice and snow frequently produced floods that we would now regard as very exceptional.