Читать книгу Cryptocurrency All-in-One For Dummies - Peter Kent, Kiana Danial - Страница 103
The Blockchain Life Cycle
ОглавлениеBlockchains originated with the creation of Bitcoin. It demonstrated that a group of individuals who had never met could operate online within a system that was desensitized to cheat others that were cooperating on the network.
The original Bitcoin network was built to secure the Bitcoin cryptocurrency. It has around 5,000 full nodes and is globally distributed. It’s primarily used to trade Bitcoin and exchange value, but the community saw the potential of doing a lot more with the network. Because of its size and time-tested security, it’s also being used to secure other smaller blockchains and blockchain applications.
The Ethereum network is a second evolution of the blockchain concept. It takes the traditional blockchain structure and adds several new programming languages that are built inside of it. Like Bitcoin, it has over 10,000 full nodes and is globally distributed. Ethereum is primarily used to trade Ether and create smart contracts. The most popular Ethereum smart contract is the ERC-20. It allows for the generation of interchangeable tokens, which can be used for fundraising purposes. We introduce smart contracts in Chapter 5 of this minibook. In Book 4, Chapters 6 and 7, you can read more about how smart contracts work, and learn how to start writing them.
A third evolution in blockchain technology, which is under active development, is addressing speed and data size constraints. Fixing these issues will enable blockchain technology to be used more realistically with mainstream applications. It will take several years before it is clear which structure will win out.
Popular new developments include sharding, a type of database partitioning that separates large databases into smaller parts called data shards. An Ethereum development effort called fork choice rule splits the Ethereum blockchain into several parallel networks. This may allow Ethereum to scale more efficiently and reduce the congestion on the network, increasing transaction speeds and lowering transaction costs.
A second popular scaling theory is called PoS (proof of stake). Broadly, PoS is the concept of putting up tokens or cryptocurrency as a bond for processing transactions. If the node is corrupted and does not process the transactions accurately, the node may forfeit their tokens or cryptocurrency.
A third effort to scale blockchain technology utilizes trusted nodes. For example, the Factom network operates with federated nodes and an unlimited number of auditing nodes. These nodes are trusted with ensuring the system. Factom’s elected network is small, with just over 60 nodes. To hedge for security risks, Factom anchors itself into other distributed networks to piggyback on the security of more extensive systems. Factom also partitions its network into smaller, faster, more easily managed parts called chains. Factom has faster transaction speeds and lower transaction costs than PoW blockchains.