Electromagnetic Waves 1

Electromagnetic Waves 1
Автор книги: id книги: 2020653     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15938,7 руб.     (147,57$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119818465 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Electromagnetic Waves 1 examines Maxwell’s equations and wave propagation. It presents the scientific bases necessary for any application using electromagnetic fields, and analyzes Maxwell’s equations, their meaning and their resolution for various situations and material environments. These equations are essential for understanding electromagnetism and its derived fields, such as radioelectricity, photonics, geolocation, measurement, telecommunications, medical imaging and radio astronomy. This book also deals with the propagation of electromagnetic, radio and optical waves, and analyzes the complex factors that must be taken into account in order to understand the problems of propagation in a free and confined space. Electromagnetic Waves 1 is a collaborative work, completed only with the invaluable contributions of Ibrahima Sakho, Hervé Sizun and JeanPierre Blot, not to mention the editor, Pierre-Noël Favennec. Aimed at students and engineers, this book provides essential theoretical support for the design and deployment of wireless radio and optical communication systems.

Оглавление

Pierre-Noël Favennec. Electromagnetic Waves 1

Table of Contents

List of Illustrations

List of Tables

Guide

Pages

Electromagnetic Waves 1. Maxwell’s Equations, Wave Propagation

Preface

References

1. Maxwell’s Equations

1.1. Maxwell’s equations in a vacuum

1.1.1. Electrostatics1. 1.1.1.1. Coulomb’s law: electrostatic field

1.1.1.2. Electrostatic field circulation: electrostatic potential

Box 1.1.Coulomb (1736–1806)

Box 1.2.Stokes (1819–1803)

1.1.1.3. Electrostatic field and potential of a continuous charge distribution

1.1.1.4. Flux and divergence of the electrostatic field: Gauss’s law

Box 1.3.Gauss (1777–1855)

Box 1.4.Green (1793–1841) and Ostrogradsky (1801–1861)

1.1.1.5. Poisson and Laplace equations

Box 1.5.Laplace (1749–1827) and Poisson (1781–1840)

1.1.1.6. Field and potential of an electrostatic dipole

1.1.1.7. Fundamental laws of electrostatics

1.1.2. Magnetostatics2. 1.1.2.1. Lorentz’s magnetic force, Laplace force

Box 1.6.Lorentz (1853–1928)

1.1.2.2. Current density vector, continuity equations

1.1.2.3. Biot–Savart law

Box 1.7.Biot (1774–1862) and Savart (1791–1841)

1.1.2.4. The local law verified by the magnetic field, magnetic field flux

1.1.2.5. Circulation of the magnetic field, Ampère’s theorem

1.1.2.6. Rotational of the magnetic field, local formulation of Ampère’s law

1.1.2.7. Vector potential, Coulomb gauge

1.1.2.8. Circulation of the vector potential

1.1.2.9. Electrostatic dipole/magnetic dipole analogy

1.1.2.10. Fundamental laws of magnetostatics

1.1.3. Electromagnetic induction3. 1.1.3.1. Experimental evidence

Box 1.8.Faraday (1791–1867) and Lenz (1804–1865)

1.1.3.2. Lagrangian of a particle in an electromagnetic field

1.1.3.3. Definitions of electric field and magnetic field

1.1.3.4. Electromotive field, induced electromotive force

1.1.3.5. Maxwell-Faraday and Lenz-Faraday laws

1.1.3.6. Lorentz and Neumann inductions

Box 1.9.Neumann (1798–1895)

1.1.3.7. Coulomb’s law

1.1.3.8. Electrical energy density

1.1.3.9. Magnetic volume energy density

1.1.4. Maxwell’s equations. 1.1.4.1. Correction of Ampère’s law: displacement current

1.1.4.2. Maxwell’s equation couples

1.1.4.3. Principle of superposition

Box 1.10.Maxwell (1831–1879)

1.1.4.4. Invariance of the electromagnetic field

1.1.4.5. Coulomb and Lorentz gauges

1.1.4.6. Propagation equations

1.1.4.7. Electromagnetic energy density, Poynting identity

1.1.4.8. Vector potential of the progressive electromagnetic plane wave

Box 1.11.Poynting (1852–1914) and de Broglie (1892–1987)

1.1.4.9. Transversality of the vector potential and electric and magnetic field of plane waves

1.1.4.10. Monochromatic progressive plane waves

1.1.4.11. Maxwell’s equations in a perfect metal

1.1.4.12. Reflection of the electromagnetic field on the surface of a perfect metal

1.1.4.13. Superposition of incident and reflected waves: stationary wave

1.2. Maxwell equations in material media4

1.2.1. Electric field and potential in macroscopic dielectric media. 1.2.1.1. Dielectric medium, polarization vector

1.2.1.2. Scalar potential in a polarized environment, polarization charges

1.2.1.3. Electric field and displacement

1.2.1.4. Electric field and electric displacement vector continuity equations across the vacuum-dielectric surface of separation

1.2.2. Homogeneous linear dielectric media. 1.2.2.1. Definition of a dielectric linear medium

1.2.2.2. Matrix properties of dielectric permittivities, electric axes

1.2.2.3. Electric field and displacement vectors in a linear homogeneous isotropic dielectric (LHI), dielectric susceptibility

1.2.3. Magnetic media. 1.2.3.1. Magnetic medium, magnetization vector

1.2.3.2. Vector potential in a magnetic medium, magnetization current densities

1.2.3.3. Magnetic excitation field and vector

1.2.3.4. Continuity equations of the magnetic excitation field and vector crossing a vacuum-magnetic medium surface of separation

1.2.3.5. Linear and isotropic magnetic media, magnetic susceptibility

1.2.4. Maxwell equations in a polarized and magnetic medium. 1.2.4.1. Couples of Maxwell’s equations in a polarized dielectric medium

1.2.4.2. Maxwell’s equations in a polarized and magnetized material medium

1.2.4.3. Integral forms of Maxwell’s equations in a material medium

1.3. References

2. The Propagation of Optical and Radio Electromagnetic Waves

2.1. Introduction

2.2. Maxwell’s equations

2.2.1. Maxwell-Gauss equation

2.2.2. Maxwell-Thompson equation

2.2.3. Maxwell-Faraday equation

2.2.4. Maxwell-Ampère equation

2.3. Solving Maxwell’s equations

2.4. Characteristics of electromagnetic waves. 2.4.1. Propagation speed

2.4.2. Wavelength and/or frequency

2.4.3. The characteristic impedance of the propagation medium

2.4.4. Poynting vector

2.4.5. The refractive index

2.4.6. Polarization

2.4.7. Transpolarization

2.4.7.1. Polarization discrimination (XPD)

2.4.7.2. Polarization isolation (XPI)

2.4.8. Different propagation paths

2.4.9. Fresnel zones

2.4.10. Fundamental properties of the propagation channel

2.4.10.1. Propagation attenuation

2.4.10.1.1. Point-to-point links

2.4.10.1.2. Radiomobile link

2.4.10.2. Variability

2.4.10.3. Frequency selectivity

2.4.10.3.1. The different representations of the radiomobile channel

2.4.10.3.2. Broadband representation of the radiomobile channel

2.5. Propagation modeling

2.5.1. Tropospheric propagation

2.5.1.1. Line-of-sight radioelectric propagation

2.5.1.1.1. Attenuation in the atmosphere

2.5.1.2. Non-line-of-sight radioelectric propagation

2.5.1.2.1. Diffraction around the Earth’s surface

2.5.1.2.2. Diffraction by the vertex of relatively thin edges

2.5.1.2.3. Diffraction due to heterogeneities

2.5.2. Propagation in rural, suburban and urban areas

2.5.2.1. Geographic databases

2.5.2.2. Propagation models. 2.5.2.2.1. The rural model

2.5.2.2.2. Suburban and urban models

2.5.3. Propagation within buildings

2.5.3.1. Penetration models

2.5.3.2. Models inside buildings. 2.5.3.2.1. Geographic databases

2.5.3.2.2. Motley-Keenan model

2.5.3.2.3. ITU-R model

2.5.3.2.4. COST 231 models

2.5.3.2.5. COST 259 model

2.5.3.2.6. Multi-Wall and Floor (MWF) model

2.5.3.2.7. The IEEE P802.11 model

2.5.3.2.8. Radioelectric engineering

2.5.3.2.9. Furniture effects

2.5.3.2.10. Effects of people

2.5.4. Broadband propagation

2.5.4.1. Path models

2.5.4.2. Geometric models

2.5.5. Ultra-wideband propagation

2.5.5.1. Attenuation model

2.5.5.2. Impulse response model

2.5.5.2.1. Generation of clusters

2.5.5.2.2. Generation of rays

2.6. The propagation of visible and infrared waves in the Earth’s atmosphere. 2.6.1. Introduction

2.6.2. The propagation of light in the atmosphere

2.6.2.1. Molecular absorption

2.6.2.2. Molecular scattering

2.6.2.3. Aerosol absorption

2.6.2.4. Aerosol scattering

2.6.3. The different models. 2.6.3.1. The Kruse and Kim models

2.6.3.2. Bataille’s model

2.6.3.2.1. Molecular extinction

2.6.3.2.2. Aerosol extinction

2.6.3.3. The Al Naboulsi model

2.6.3.4. Attenuation by rain

2.6.3.5. Attenuation by snow

2.6.3.6. Scintillation

2.6.4. Experimental results

2.6.4.1. Comparison with the Kruse and Kim models (850 and 950 nm)

2.6.4.2. Comparison with the Al Naboulsi model

2.6.5. Fog and mist

2.6.6. Sandstorms

2.6.7. Meteorological optical range. 2.6.7.1. Visibility

2.6.7.2. Measuring instruments. 2.6.7.2.1. Transmissometer

2.6.7.2.2. Scatterometer

2.6.8. Applications

2.7. Conclusion

2.8. Recommendations ITU-R

2.9. References

Appendix 1. Mathematical Formulae1. A1.1. Trigonometric transformation equations

A1.2. Series developments

Appendix 2. Vector Calculations. A2.1. Vectors in coordinate systems. A2.1.1. Cartesian coordinate systems

A2.1.2. Cylindrical coordinate systems

A2.1.3. Spherical coordinate systems

A2.1.4. Laws of orientation in space. A2.1.4.1. Notion of direct trihedron

A2.1.4.2. Orientation of the surface vector

A2.1.5. Solid angle

A2.1.6. Scalar product of two vectors

A2.1.7. Vector product of two vectors

A2.1.8. Field

A2.1.9. Circulation of a vector

A2.1.10. Flux of a vector

A2.2. Vector operators. A2.2.1. Gradient operators

A2.2.1.1. Cartesian coordinates

A2.2.1.2. Cylindrical coordinates

A2.2.1.3. Spherical coordinates

A2.2.2. Divergence operator

A2.2.2.1. Cartesian coordinates

A2.2.2.2. Cylindrical coordinates

A2.2.2.3. Spherical coordinates

A2.2.3. Rotation operator

A2.2.3.1. Cartesian coordinates

A2.2.3.2. Cylindrical coordinates

A2.2.3.3. Spherical coordinates

A2.2.4. Laplacian operator

A2.2.4.1. Cartesian coordinates

A2.2.4.2. Cylindrical coordinates

A2.2.4.3. Spherical coordinates

A2.2.5. Relations in vector algebra

A2.3. Integral transform theorems. A2.3.1. Stokes’ theorem

A2.3.2. Ostrogradsky’s theorem

A2.4. Fundamental relations

Appendix 3. Frequency Spectrum1. A3.1. Introduction

A3.2. The different frequency ranges. A3.2.1. ELF waves (frequency less than 3 kHz)

A3.2.2. VLF waves (3–30 kHz)

A3.2.3. LF waves (30–300 kHz)

A3.2.4. MF waves (300–3,000 kHz)

A3.2.5. HF waves (3–30 MHz)

A3.2.6. VHF waves (30–300 MHz)

A3.2.7. UHF waves (300–3,000 MHz)

A3.2.8. SHF waves (3–30 GHz)

A3.2.9. EH waves (30–300 GHz)

A3.2.10. Sub-EHF waves (300–3,000 GHz)

A3.2.11. Infrared waves (3–430 THz) and light waves (430–860 THz)

Appendix 4. The Decibel. A4.1. Introduction

A4.2. Definition

A4.3. The different variants

A4.4. Decibel operations

A4.5. Correlation table

A4.6. Particular values

Appendix 5. The International Visibility Code

List of Acronyms and Constants. Acronyms

Constants

List of Authors

Index. A

B, C

D

E

F

G

I

L

M

N, O

P

R

S, T

U, V

W

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Waves, Field Directors – Pierre-Noël Favennec, Frédérique de Fornel

.....

Figure P.1. A wave bath envisaged by Michel Urien1

This referenced work, presented in two inseparable volumes, is essential for any student, engineer or researcher wishing to understand electromagnetism and all the technologies derived from it.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Electromagnetic Waves 1
Подняться наверх