Electromagnetic Waves 1
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Pierre-Noël Favennec. Electromagnetic Waves 1
Table of Contents
List of Illustrations
List of Tables
Guide
Pages
Electromagnetic Waves 1. Maxwell’s Equations, Wave Propagation
Preface
References
1. Maxwell’s Equations
1.1. Maxwell’s equations in a vacuum
1.1.1. Electrostatics1. 1.1.1.1. Coulomb’s law: electrostatic field
1.1.1.2. Electrostatic field circulation: electrostatic potential
Box 1.1.Coulomb (1736–1806)
Box 1.2.Stokes (1819–1803)
1.1.1.3. Electrostatic field and potential of a continuous charge distribution
1.1.1.4. Flux and divergence of the electrostatic field: Gauss’s law
Box 1.3.Gauss (1777–1855)
Box 1.4.Green (1793–1841) and Ostrogradsky (1801–1861)
1.1.1.5. Poisson and Laplace equations
Box 1.5.Laplace (1749–1827) and Poisson (1781–1840)
1.1.1.6. Field and potential of an electrostatic dipole
1.1.1.7. Fundamental laws of electrostatics
1.1.2. Magnetostatics2. 1.1.2.1. Lorentz’s magnetic force, Laplace force
Box 1.6.Lorentz (1853–1928)
1.1.2.2. Current density vector, continuity equations
1.1.2.3. Biot–Savart law
Box 1.7.Biot (1774–1862) and Savart (1791–1841)
1.1.2.4. The local law verified by the magnetic field, magnetic field flux
1.1.2.5. Circulation of the magnetic field, Ampère’s theorem
1.1.2.6. Rotational of the magnetic field, local formulation of Ampère’s law
1.1.2.7. Vector potential, Coulomb gauge
1.1.2.8. Circulation of the vector potential
1.1.2.9. Electrostatic dipole/magnetic dipole analogy
1.1.2.10. Fundamental laws of magnetostatics
1.1.3. Electromagnetic induction3. 1.1.3.1. Experimental evidence
Box 1.8.Faraday (1791–1867) and Lenz (1804–1865)
1.1.3.2. Lagrangian of a particle in an electromagnetic field
1.1.3.3. Definitions of electric field and magnetic field
1.1.3.4. Electromotive field, induced electromotive force
1.1.3.5. Maxwell-Faraday and Lenz-Faraday laws
1.1.3.6. Lorentz and Neumann inductions
Box 1.9.Neumann (1798–1895)
1.1.3.7. Coulomb’s law
1.1.3.8. Electrical energy density
1.1.3.9. Magnetic volume energy density
1.1.4. Maxwell’s equations. 1.1.4.1. Correction of Ampère’s law: displacement current
1.1.4.2. Maxwell’s equation couples
1.1.4.3. Principle of superposition
Box 1.10.Maxwell (1831–1879)
1.1.4.4. Invariance of the electromagnetic field
1.1.4.5. Coulomb and Lorentz gauges
1.1.4.6. Propagation equations
1.1.4.7. Electromagnetic energy density, Poynting identity
1.1.4.8. Vector potential of the progressive electromagnetic plane wave
Box 1.11.Poynting (1852–1914) and de Broglie (1892–1987)
1.1.4.9. Transversality of the vector potential and electric and magnetic field of plane waves
1.1.4.10. Monochromatic progressive plane waves
1.1.4.11. Maxwell’s equations in a perfect metal
1.1.4.12. Reflection of the electromagnetic field on the surface of a perfect metal
1.1.4.13. Superposition of incident and reflected waves: stationary wave
1.2. Maxwell equations in material media4
1.2.1. Electric field and potential in macroscopic dielectric media. 1.2.1.1. Dielectric medium, polarization vector
1.2.1.2. Scalar potential in a polarized environment, polarization charges
1.2.1.3. Electric field and displacement
1.2.1.4. Electric field and electric displacement vector continuity equations across the vacuum-dielectric surface of separation
1.2.2. Homogeneous linear dielectric media. 1.2.2.1. Definition of a dielectric linear medium
1.2.2.2. Matrix properties of dielectric permittivities, electric axes
1.2.2.3. Electric field and displacement vectors in a linear homogeneous isotropic dielectric (LHI), dielectric susceptibility
1.2.3. Magnetic media. 1.2.3.1. Magnetic medium, magnetization vector
1.2.3.2. Vector potential in a magnetic medium, magnetization current densities
1.2.3.3. Magnetic excitation field and vector
1.2.3.4. Continuity equations of the magnetic excitation field and vector crossing a vacuum-magnetic medium surface of separation
1.2.3.5. Linear and isotropic magnetic media, magnetic susceptibility
1.2.4. Maxwell equations in a polarized and magnetic medium. 1.2.4.1. Couples of Maxwell’s equations in a polarized dielectric medium
1.2.4.2. Maxwell’s equations in a polarized and magnetized material medium
1.2.4.3. Integral forms of Maxwell’s equations in a material medium
1.3. References
2. The Propagation of Optical and Radio Electromagnetic Waves
2.1. Introduction
2.2. Maxwell’s equations
2.2.1. Maxwell-Gauss equation
2.2.2. Maxwell-Thompson equation
2.2.3. Maxwell-Faraday equation
2.2.4. Maxwell-Ampère equation
2.3. Solving Maxwell’s equations
2.4. Characteristics of electromagnetic waves. 2.4.1. Propagation speed
2.4.2. Wavelength and/or frequency
2.4.3. The characteristic impedance of the propagation medium
2.4.4. Poynting vector
2.4.5. The refractive index
2.4.6. Polarization
2.4.7. Transpolarization
2.4.7.1. Polarization discrimination (XPD)
2.4.7.2. Polarization isolation (XPI)
2.4.8. Different propagation paths
2.4.9. Fresnel zones
2.4.10. Fundamental properties of the propagation channel
2.4.10.1. Propagation attenuation
2.4.10.1.1. Point-to-point links
2.4.10.1.2. Radiomobile link
2.4.10.2. Variability
2.4.10.3. Frequency selectivity
2.4.10.3.1. The different representations of the radiomobile channel
2.4.10.3.2. Broadband representation of the radiomobile channel
2.5. Propagation modeling
2.5.1. Tropospheric propagation
2.5.1.1. Line-of-sight radioelectric propagation
2.5.1.1.1. Attenuation in the atmosphere
2.5.1.2. Non-line-of-sight radioelectric propagation
2.5.1.2.1. Diffraction around the Earth’s surface
2.5.1.2.2. Diffraction by the vertex of relatively thin edges
2.5.1.2.3. Diffraction due to heterogeneities
2.5.2. Propagation in rural, suburban and urban areas
2.5.2.1. Geographic databases
2.5.2.2. Propagation models. 2.5.2.2.1. The rural model
2.5.2.2.2. Suburban and urban models
2.5.3. Propagation within buildings
2.5.3.1. Penetration models
2.5.3.2. Models inside buildings. 2.5.3.2.1. Geographic databases
2.5.3.2.2. Motley-Keenan model
2.5.3.2.3. ITU-R model
2.5.3.2.4. COST 231 models
2.5.3.2.5. COST 259 model
2.5.3.2.6. Multi-Wall and Floor (MWF) model
2.5.3.2.7. The IEEE P802.11 model
2.5.3.2.8. Radioelectric engineering
2.5.3.2.9. Furniture effects
2.5.3.2.10. Effects of people
2.5.4. Broadband propagation
2.5.4.1. Path models
2.5.4.2. Geometric models
2.5.5. Ultra-wideband propagation
2.5.5.1. Attenuation model
2.5.5.2. Impulse response model
2.5.5.2.1. Generation of clusters
2.5.5.2.2. Generation of rays
2.6. The propagation of visible and infrared waves in the Earth’s atmosphere. 2.6.1. Introduction
2.6.2. The propagation of light in the atmosphere
2.6.2.1. Molecular absorption
2.6.2.2. Molecular scattering
2.6.2.3. Aerosol absorption
2.6.2.4. Aerosol scattering
2.6.3. The different models. 2.6.3.1. The Kruse and Kim models
2.6.3.2. Bataille’s model
2.6.3.2.1. Molecular extinction
2.6.3.2.2. Aerosol extinction
2.6.3.3. The Al Naboulsi model
2.6.3.4. Attenuation by rain
2.6.3.5. Attenuation by snow
2.6.3.6. Scintillation
2.6.4. Experimental results
2.6.4.1. Comparison with the Kruse and Kim models (850 and 950 nm)
2.6.4.2. Comparison with the Al Naboulsi model
2.6.5. Fog and mist
2.6.6. Sandstorms
2.6.7. Meteorological optical range. 2.6.7.1. Visibility
2.6.7.2. Measuring instruments. 2.6.7.2.1. Transmissometer
2.6.7.2.2. Scatterometer
2.6.8. Applications
2.7. Conclusion
2.8. Recommendations ITU-R
2.9. References
Appendix 1. Mathematical Formulae1. A1.1. Trigonometric transformation equations
A1.2. Series developments
Appendix 2. Vector Calculations. A2.1. Vectors in coordinate systems. A2.1.1. Cartesian coordinate systems
A2.1.2. Cylindrical coordinate systems
A2.1.3. Spherical coordinate systems
A2.1.4. Laws of orientation in space. A2.1.4.1. Notion of direct trihedron
A2.1.4.2. Orientation of the surface vector
A2.1.5. Solid angle
A2.1.6. Scalar product of two vectors
A2.1.7. Vector product of two vectors
A2.1.8. Field
A2.1.9. Circulation of a vector
A2.1.10. Flux of a vector
A2.2. Vector operators. A2.2.1. Gradient operators
A2.2.1.1. Cartesian coordinates
A2.2.1.2. Cylindrical coordinates
A2.2.1.3. Spherical coordinates
A2.2.2. Divergence operator
A2.2.2.1. Cartesian coordinates
A2.2.2.2. Cylindrical coordinates
A2.2.2.3. Spherical coordinates
A2.2.3. Rotation operator
A2.2.3.1. Cartesian coordinates
A2.2.3.2. Cylindrical coordinates
A2.2.3.3. Spherical coordinates
A2.2.4. Laplacian operator
A2.2.4.1. Cartesian coordinates
A2.2.4.2. Cylindrical coordinates
A2.2.4.3. Spherical coordinates
A2.2.5. Relations in vector algebra
A2.3. Integral transform theorems. A2.3.1. Stokes’ theorem
A2.3.2. Ostrogradsky’s theorem
A2.4. Fundamental relations
Appendix 3. Frequency Spectrum1. A3.1. Introduction
A3.2. The different frequency ranges. A3.2.1. ELF waves (frequency less than 3 kHz)
A3.2.2. VLF waves (3–30 kHz)
A3.2.3. LF waves (30–300 kHz)
A3.2.4. MF waves (300–3,000 kHz)
A3.2.5. HF waves (3–30 MHz)
A3.2.6. VHF waves (30–300 MHz)
A3.2.7. UHF waves (300–3,000 MHz)
A3.2.8. SHF waves (3–30 GHz)
A3.2.9. EH waves (30–300 GHz)
A3.2.10. Sub-EHF waves (300–3,000 GHz)
A3.2.11. Infrared waves (3–430 THz) and light waves (430–860 THz)
Appendix 4. The Decibel. A4.1. Introduction
A4.2. Definition
A4.3. The different variants
A4.4. Decibel operations
A4.5. Correlation table
A4.6. Particular values
Appendix 5. The International Visibility Code
List of Acronyms and Constants. Acronyms
Constants
List of Authors
Index. A
B, C
D
E
F
G
I
L
M
N, O
P
R
S, T
U, V
W
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Waves, Field Directors – Pierre-Noël Favennec, Frédérique de Fornel
.....
Figure P.1. A wave bath envisaged by Michel Urien1
This referenced work, presented in two inseparable volumes, is essential for any student, engineer or researcher wishing to understand electromagnetism and all the technologies derived from it.
.....