Читать книгу Electromagnetic Waves 1 - Pierre-Noël Favennec - Страница 3
List of Illustrations
Оглавление1 PrefaceFigure P.1. A wave bath envisaged by Michel Urien1
2 Chapter 1Figure 1.1. Coulomb forces between two point and fixed charges q1 and q2Figure 1.2. Electrostatic field created by a fixed point charge qFigure 1.3. Circulation of the electrostatic field about a closed contour (C)Figure 1.4. Continuous charge distributionsFigure 1.5. Electrostatic field linesFigure 1.6. Charge qint at the center O of a sphere with radius rFigure 1.7. a) Electrostatic dipole; b) field lines (in green) and equipotential...Figure 1.8. Current density vector at point MFigure 1.9. Current density vector at point M’Figure 1.10. Portion of a conductor with section s, traversed by a current with ...Figure 1.11. Magnetic field created by an element with a length of a circuit...Figure 1.12. Current distribution within volume VFigure 1.13. Circulation of a magnetic field on a contour (C)Figure 1.14. Magnetic dipole composed of a circular coil with magnetic moment MFigure 1.15. Analogy a) electric dipole; b) magnetic dipoleFigure 1.16. a) Magnet far from the coil axis: an electric current occurs; b) ma...Figure 1.17. a) Portion AC of a conductor in motion in a magnetic field; b) elec...Figure 1.18. Area swept by a section AC of the filiform conductor in motionFigure 1.19. Conductors in equilibriumFigure 1.20. Electrostatic field surrounding a flat charged surfaceFigure 1.21. Conductors in equilibriumFigure 1.22. Sources (S) of charges and currentsFigure 1.23. Surface S surrounding volume V containing charge carriersFigure 1.24. Electric and magnetic fields perpendicular and orthogonal to the pr...Figure 1.25. Perfect metal arranged vertically on the propagation axis of a mono...Figure 1.26. Structure of an electromagnetic stationary waveFigure 1.27. Most likely arrangement of dipole moments of the most stable polar ...Figure 1.28. Dielectric medium with volume τFigure 1.29. Refraction of the electric displacement vector across a vacuum-diel...Figure 1.30. Circulation of the electric field along an ABDF circuit overlapping...Figure 1.31. Magnetic medium with volume τFigure 1.32. Circulation of the excitation magnetic vector on a closed contour (...Figure 1.33. Refraction of the magnetic field crossing a vacuum-magnetic medium ...Figure 1.34. Circulation of the magnetic field along an ABDF circuit overlapping...Figure 1.35. Illustration of the different types of magnetism: a) magnetic momen...
3 Chapter 2Figure 2.1. Configuration of field lines of the electric fieldFigure 2.2. Configuration of magnetic field linesFigure 2.3. Diagram depicting the propagation of an electromagnetic waveFigure 2.4. The different polarization states for a wave propagating in directio...Figure 2.5. Schematic of transpolarizationFigure 2.6. Schematic representation of Fresnel zonesFigure 2.7. Representation of the different Fourier transforms on impulse respon...Figure 2.8. Representation of the temporal evolution of the propagation channel ...Figure 2.9. Evolution of the impulse response: turning a street corner in the mi...Figure 2.10. Example of a power delay profile; highlighted by the delay interval...Figure 2.11. Example of a power delay profile; highlighted by the delay window a...Figure 2.12. Specific attenuation (dB/km) due to atmospheric gases (O2 and H2O) ...Figure 2.13. Specific attenuation (dB/km) due to rain as a function of the frequ...Figure 2.14. a) Representation of specular reflection; b) representation of diff...Figure 2.15a. Example of the variation of the real part of reflection and transm...Figure 2.15b. Example of the variation of the modulus of the reflection and tran...Figure 2.16. Difference in path created by a surface irregularity with height HFigure 2.17. Two-line modelFigure 2.18. Diagram showing the blocking of the reflected ray with an obstacleFigure 2.19. Diagram showing the path reflected on an island to limit the effect...Figure 2.20. Geometries associated with Descartes lawFigure 2.21. Paths of radioelectric waves as a function of refractivity gradientFigure 2.22. Representation of a sharp diffracting edgeFigure 2.23. Attenuation due to diffraction off an edgeFigure 2.24. Propagation of an electromagnetic wave by tropospheric scatteringFigure 2.25. Example of variation in the radioelectric field due to tropospheric...Figure 2.26. Example of variation in the radioelectric field due to reflection o...Figure 2.27. Example of variation in radioelectric field due to the presence of ...Figure 2.28. Map of the topography (relief) in the Perpignan region, FranceFigure 2.29. Map of the topography (relief) in the Belfort region, FranceFigure 2.30. Schematic representation of the “transmitter-receiver” profileFigure 2.31. Definition of the angle between the street axis and the direction o...Figure 2.32. Example of a “transceiver” profileFigure 2.33. Example of urban coverageFigure 2.34. Example of a representation of a residential environmentFigure 2.35. Example of radioelectric coverage in a residential environmentFigure 2.36. Schematic representation of a GSM TU channel with 12 pathsFigure 2.37. Relations between the position of reflectors and diffusers in the p...Figure 2.38. Spatiotemporal representation of the impulse response: a) angular p...Figure 2.39. Power profile according to Saleh and Valenzuela formalismFigure 2.40. Transmittance of the atmosphere due to molecular absorptionFigure 2.41. Specific attenuation (dB/km) due to rain in the optical and infrare...Figure 2.42. Wet snow: attenuation as a function of precipitation rate at 1,550 ...Figure 2.43. Dry snow: attenuation as a function of precipitation rate at 1,550 ...Figure 2.44. Deviation of the laser beam under the influence of turbulence cells...Figure 2.45. Deviation of the laser beam under the influence of turbulence cells...Figure 2.46. Effects of different heterogeneities and different sizes on the pro...Figure 2.47. Variation in attenuation linked to the scintillation as a function ...Figure 2.48a. Variation in specific attenuation at 850 nm as a function of visib...Figure 2.48b. Variation in specific attenuation at 950 nm as a function of visib...Figure 2.49a. Variation in specific attenuation at 850 nm as a function of visib...Figure 2.49b. Variation in specific attenuation at 950 nm as a function of visib...Figure 2.50. Variation in specific attenuation at 850 nm as a function of visibi...Figure 2.51. Variation in specific attenuation at 850 nm as a function of visibi...Figure 2.52. Number of days a year in France with fog (visibility less than 1 km...Figure 2.53. Sandstorm (source: Wikipedia)Figure 2.54. Variations in the MOR observed at the Turbie site on June 28, 2004Figure 2.55. Direct beam transmissometerFigure 2.56. Reflected beam transmissometerFigure 2.57. Diagram showing the measurement of visibility by backscatterFigure 2.58. Diagram showing the measurement of visibility by forward scatter
4 Appendix 2Figure A2.1. Cartesian coordinate systemFigure A2.2. Cylindrical coordinate systemFigure A2.3. Spherical coordinate systemsFigure A2.4. Law of orientation of an elementary surface, corkscrew ruleFigure A2.5. Surface S intersected by a cone on a sphere with radius RFigure A2.6. Surface dS seen from point O at a distance rFigure A2.7. Cones with demi-angles at the apex α and α + dαFigure A2.8. Vectors and forming angle θ between themFigure A2.9. Vector product P of two vectors and Figure A2.10. Circulation of a vector on a circuit (C)