Читать книгу Derivatives - Pirie Wendy L. - Страница 16
CHAPTER 1
DERIVATIVE MARKETS AND INSTRUMENTS
4. TYPES OF DERIVATIVES
4.2. Contingent Claims
ОглавлениеA contingent claim is a derivative in which the outcome or payoff is dependent on the outcome or payoff of an underlying asset. Although this characteristic is also associated with forward commitments, a contingent claim has come to be associated with a right, but not an obligation, to make a final payment contingent on the performance of the underlying. Given that the holder of the contingent claim has a choice, the term contingent claim has become synonymous with the term option. The holder has a choice of whether or not to exercise the option. This choice creates a payoff that transforms the underlying payoff in a more pronounced manner than does a forward, futures, or swap. Those instruments provide linear payoffs: As the underlying goes up (down), the derivative gains (loses). The further up (down) the underlying goes, the more the derivative gains (loses). Options are different in that they limit losses in one direction. In addition, options can pay off as the underlying goes down. Hence, they transform the payoffs of the underlying into something quite different.
4.2.1 Options
We might say that an option, as a contingent claim, grants the right but not the obligation to buy an asset at a later date and at a price agreed on when the option is initiated. But there are so many variations of options that we cannot settle on this statement as a good formal definition. For one thing, options can also grant the right to sell instead of the right to buy. Moreover, they can grant the right to buy or sell earlier than at expiration. So, let us see whether we can combine these points into an all-encompassing definition of an option.
An option is a derivative contract in which one party, the buyer, pays a sum of money to the other party, the seller or writer, and receives the right to either buy or sell an underlying asset at a fixed price either on a specific expiration date or at any time prior to the expiration date.
Unfortunately, even that definition does not cover every unique aspect of options. For example, options can be created in the OTC market and customized to the terms of each party, or they can be created and traded on options exchanges and standardized. As with forward contracts and swaps, customized options are subject to default but are less regulated and relatively transparent. Exchange-traded options are protected against default by the clearinghouse of the options exchange and are relatively transparent and regulated at the national level. As noted in the definition above, options can be terminated early or at their expirations. When an option is terminated, either early or at expiration, the holder of the option chooses whether to exercise it. If he exercises it, he either buys or sells the underlying asset, but he does not have both rights. The right to buy is one type of option, referred to as a call or call option, whereas the right to sell is another type of option, referred to as a put or put option. With one very unusual and advanced exception that we do not cover, an option is either a call or a put, and that point is made clear in the contract.
An option is also designated as exercisable early (before expiration) or only at expiration. Options that can be exercised early are referred to as American-style. Options that can be exercised only at expiration are referred to as European-style. It is extremely important that you do not associate these terms with where these options are traded. Both types of options trade on all continents.13
As with forwards and futures, an option can be exercised by physical delivery or cash settlement, as written in the contract. For a call option with physical delivery, upon exercise the underlying asset is delivered to the call buyer, who pays the call seller the exercise price. For a put option with physical delivery, upon exercise the put buyer delivers the underlying asset to the put seller and receives the strike price. For a cash settlement option, exercise results in the seller paying the buyer the cash equivalent value as if the asset were delivered and paid for.
The fixed price at which the underlying asset can be purchased is called the exercise price (also called the “strike price,” the “strike,” or the “striking price”). This price is somewhat analogous to the forward price because it represents the price at which the underlying will be purchased or sold if the option is exercised. The forward price, however, is set in the pricing of the contract such that the contract value at the start is zero. The strike price of the option is chosen by the participants. The actual price or value of the option is an altogether different concept.
As noted, the buyer pays the writer a sum of money called the option premium, or just the “premium.” It represents a fair price of the option, and in a well-functioning market, it would be the value of the option. Consistent with everything we know about finance, it is the present value of the cash flows that are expected to be received by the holder of the option during the life of the option. At this point, we will not get into how this price is determined, but you will learn that later. For now, there are some fundamental concepts you need to understand, which form a basis for understanding how options are priced and why anyone would use an option.
Because the option buyer (the long) does not have to exercise the option, beyond the initial payment of the premium, there is no obligation of the long to the short. Thus, only the short can default, which would occur if the long exercises the option and the short fails to do what it is supposed to do. Thus, in contrast to forwards and swaps, in which either party could default to the other, default in options is possible only from the short to the long.
Ruling out the possibility of default for now, let us examine what happens when an option expires. Using the same notation used previously, let ST be the price of the underlying at the expiration date, T, and X be the exercise price of the option. Remember that a call option allows the holder, or long, to pay X and receive the underlying. It should be obvious that the long would exercise the option at expiration if ST is greater than X, meaning that the underlying value is greater than what he would pay to obtain the underlying. Otherwise, he would simply let the option expire. Thus, on the expiration date, the option is described as having a payoff of Max(0,ST – X). Because the holder of the option would be entitled to exercise it and claim this amount, it also represents the value of the option at expiration. Let us denote that value as cT. Thus,
which is read as “take the maximum of either zero or ST – X.” Thus, if the underlying value exceeds the exercise price (ST > X), then the option value is positive and equal to ST – X. The call option is then said to be in the money. If the underlying value is less than the exercise price (ST < X), then ST – X is negative; zero is greater than a negative number, so the option value would be zero. When the underlying value is less than the exercise price, the call option is said to be out of the money. When ST = X, the call option is said to be at the money, although at the money is, for all practical purposes, out of the money because the value is still zero.
This payoff amount is also the value of the option at expiration. It represents value because it is what the option is worth at that point. If the holder of the option sells it to someone else an instant before expiration, it should sell for that amount because the new owner would exercise it and capture that amount. To the seller, the value of the option at that point is ‒Max(0,ST – X), which is negative to the seller if the option is in the money and zero otherwise.
Using the payoff value and the price paid for the option, we can determine the profit from the strategy, which is denoted with the Greek symbol Π. Let us say the buyer paid c0 for the option at time 0. Then the profit is
To the seller, who received the premium at the start, the payoff is
The profit is
Exhibit 3 illustrates the payoffs and profits to the call buyer and seller as graphical representations of these equations, with the payoff or value at expiration indicated by the dark line and the profit indicated by the light line. Note in Panel A that the buyer has no upper limit on the profit and has a fixed downside loss limit equal to the premium paid for the option. Such a condition, with limited loss and unlimited gain, is a temptation to many unsuspecting investors, but keep in mind that the graph does not indicate the frequency with which gains and losses will occur. Panel B is the mirror image of Panel A and shows that the seller has unlimited losses and limited gains. One might suspect that selling a call is, therefore, the worst investment strategy possible. Indeed, it is a risky strategy, but at this point these are only simple strategies. Other strategies can be added to mitigate the seller’s risk to a substantial degree.
EXHIBIT 3 Payoff and Profit from a Call Option
Now let us consider put options. Recall that a put option allows its holder to sell the underlying asset at the exercise price. Thus, the holder should exercise the put at expiration if the underlying asset is worth less than the exercise price (ST < X). In that case, the put is said to be in the money. If the underlying asset is worth the same as the exercise price (ST = X), meaning the put is at the money, or more than the exercise price (ST > X), meaning the put is out of the money, the option holder would not exercise it and it would expire with zero value. Thus, the payoff to the put holder is
If the put buyer paid p0 for the put at time 0, the profit is
And for the seller, the payoff is
And the profit is
Exhibit 4 illustrates the payoffs and profits to the buyer and seller of a put.
EXHIBIT 4 Payoff and Profit from a Put Option
The put buyer has a limited loss, and although the gain is limited by the fact that the underlying value cannot go below zero, the put buyer does gain more the lower the value of the underlying. In this manner, we see how a put option is like insurance. Bad outcomes for the underlying trigger a payoff for both the insurance policy and the put, whereas good outcomes result only in loss of the premium. The put seller, like the insurer, has a limited gain and a loss that is larger the lower the value of the underlying. As with call options, these graphs must be considered carefully because they do not indicate the frequency with which gains and losses will occur. At this point, it should be apparent that buying a call option is consistent with a bullish point of view and buying a put option is consistent with a bearish point of view. Moreover, in contrast to forward commitments, which have payoffs that are linearly related to the payoffs of the underlying (note the straight lines in Exhibit 1), contingent claims have payoffs that are non-linear in relation to the underlying. There is linearity over a range – say, from 0 to X or from X upward or downward – but over the entire range of values for the underlying, the payoffs of contingent claims cannot be depicted with a single straight line.
We have seen only a snapshot of the payoff and profit graphs that can be created with options. Calls can be combined with puts, the underlying asset, and other calls or puts with different expirations and exercise prices to create a diverse set of payoff and profit graphs, some of which are covered later in the curriculum.
Before leaving options, let us again contrast the differences between options and forward commitments. With forward commitments, the parties agree to trade an underlying asset at a later date and at a price agreed upon when the contract is initiated. Neither party pays any cash to the other at the start. With options, the buyer pays cash to the seller at the start and receives the right, but not the obligation, to buy (if a call) or sell (if a put) the underlying asset at expiration at a price agreed upon (the exercise price) when the contract is initiated. In contrast to forwards, futures, and swaps, options do have value at the start: the premium paid by buyer to seller. That premium pays for the right, eliminating the obligation, to trade the underlying at a later date, as would be the case with a forward commitment.
Although there are numerous variations of options, most have the same essential features described here. There is, however, a distinctive family of contingent claims that emerged in the early 1990s and became widely used and, in some cases, heavily criticized. These instruments are known as credit derivatives.
4.2.2 Credit Derivatives
Credit risk is surely one of the oldest risks known to mankind. Human beings have been lending things to each other for thousands of years, and even the most primitive human beings must have recognized the risk of lending some of their possessions to their comrades. Until the last 20 years or so, however, the management of credit risk was restricted to simply doing the best analysis possible before making a loan, monitoring the financial condition of the borrower during the loan, limiting the exposure to a given party, and requiring collateral. Some modest forms of insurance against credit risk have existed for a number of years, but insurance can be a slow and cumbersome way of protecting against credit loss. Insurance is typically highly regulated, and insurance laws are usually very consumer oriented. Thus, credit insurance as a financial product has met with only modest success.
In the early 1990s, however, the development of the swaps market led to the creation of derivatives that would hedge credit risk. These instruments came to be known as credit derivatives, and they avoided many of the regulatory constraints of the traditional insurance industry. Here is a formal definition:
A credit derivative is a class of derivative contracts between two parties, a credit protection buyer and a credit protection seller, in which the latter provides protection to the former against a specific credit loss.
One of the first credit derivatives was a total return swap, in which the underlying is typically a bond or loan, in contrast to, say, a stock or stock index. The credit protection buyer offers to pay the credit protection seller the total return on the underlying bond. This total return consists of all interest and principal paid by the borrower plus any changes in the bond’s market value. In return, the credit protection seller typically pays the credit protection buyer either a fixed or a floating rate of interest. Thus, if the bond defaults, the credit protection seller must continue to make its promised payments, while receiving a very small return or virtually no return from the credit protection buyer. If the bond incurs a loss, as it surely will if it defaults, the credit protection seller effectively pays the credit protection buyer.
Another type of credit derivative is the credit spread option, in which the underlying is the credit (yield) spread on a bond, which is the difference between the bond’s yield and the yield on a benchmark default-free bond. As you will learn in the fixed-income material, the credit spread is a reflection of investors’ perception of credit risk. Because a credit spread option requires a credit spread as the underlying, this type of derivative works only with a traded bond that has a quoted price. The credit protection buyer selects the strike spread it desires and pays the option premium to the credit protection seller. At expiration, the parties determine whether the option is in the money by comparing the bond’s yield spread with the strike chosen, and if it is, the credit protection seller pays the credit protection buyer the established payoff. Thus, this instrument is essentially a call option in which the underlying is the credit spread.
A third type of credit derivative is the credit-linked note (CLN). With this derivative, the credit protection buyer holds a bond or loan that is subject to default risk (the underlying reference security) and issues its own security (the credit-linked note) with the condition that if the bond or loan it holds defaults, the principal payoff on the credit-linked note is reduced accordingly. Thus, the buyer of the credit-linked note effectively insures the credit risk of the underlying reference security.
These three types of credit derivatives have had limited success compared with the fourth type of credit derivative, the credit default swap (CDS). The credit default swap, in particular, has achieved much success by capturing many of the essential features of insurance while avoiding the high degree of consumer regulations that are typically associated with traditional insurance products.
In a CDS, one party – the credit protection buyer, who is seeking credit protection against a third party – makes a series of regularly scheduled payments to the other party, the credit protection seller. The seller makes no payments until a credit event occurs. A declaration of bankruptcy is clearly a credit event, but there are other types of credit events, such as a failure to make a scheduled payment or an involuntary restructuring. The CDS contract specifies what constitutes a credit event, and the industry has a procedure for declaring credit events, though that does not guarantee the parties will not end up in court arguing over whether something was or was not a credit event.
Formally, a credit default swap is defined as follows:
A credit default swap is a derivative contract between two parties, a credit protection buyer and a credit protection seller, in which the buyer makes a series of cash payments to the seller and receives a promise of compensation for credit losses resulting from the default of a third party.
A CDS is conceptually a form of insurance. Sellers of CDSs, oftentimes banks or insurance companies, collect periodic payments and are required to pay out if a loss occurs from the default of a third party. These payouts could take the form of restitution of the defaulted amount or the party holding the defaulting asset could turn it over to the CDS seller and receive a fixed amount. The most common approach is for the payout to be determined by an auction to estimate the market value of the defaulting debt. Thus, CDSs effectively provide coverage against a loss in return for the protection buyer paying a premium to the protection seller, thereby taking the form of insurance against credit loss. Although insurance contracts have certain legal characteristics that are not found in credit default swaps, the two instruments serve similar purposes and operate in virtually the same way: payments made by one party in return for a promise to cover losses incurred by the other.
Exhibit 5 illustrates the typical use of a CDS by a lender. The lender is exposed to the risk of non-payment of principal and interest. The lender lays off this risk by purchasing a CDS from a CDS seller. The lender – now the CDS buyer – promises to make a series of periodic payments to the CDS seller, who then stands ready to compensate the CDS buyer for credit losses.
EXHIBIT 5 Using a Credit Default Swap to Hedge the Credit Risk of a Loan
Clearly, the CDS seller is betting on the borrower’s not defaulting or – more generally, as insurance companies operate – that the total payouts it is responsible for are less than the total payments collected. Of course, most insurance companies are able to do this by having reliable actuarial statistics, diversifying their risk, and selling some of the risk to other insurance companies. Actuarial statistics are typically quite solid. Average claims for life, health, and casualty insurance are well documented, and insurers can normally set premiums to cover losses and operate at a reasonable profit. Although insurance companies try to manage some of their risks at the micro level (e.g., charging smokers more for life and health insurance), most of their risk management is at the macro level, wherein they attempt to make sure their risks are not concentrated. Thus, they avoid selling too much homeowners insurance to individuals in tornado-prone areas. If they have such an exposure, they can use the reinsurance market to sell some of the risk to other companies that are not overexposed to that risk. Insurance companies attempt to diversify their risks and rely on the principle of uncorrelated risks, which plays such an important role in portfolio management. A well-diversified insurance company, like a well-diversified portfolio, should be able to earn a return commensurate with its assumed risk in the long run.
Credit default swaps should operate the same way. Sellers of CDSs should recognize when their credit risk is too concentrated. When that happens, they become buyers of CDSs from other parties or find other ways to lay off the risk. Unfortunately, during the financial crisis that began in 2007, many sellers of CDSs failed to recognize the high correlations among borrowers whose debt they had guaranteed. One well-known CDS seller, AIG, is a large and highly successful traditional insurance company that got into the business of selling CDSs. Many of these CDSs insured against mortgages. With the growth of the subprime mortgage market, many of these CDS-insured mortgages had a substantial amount of credit risk and were often poorly documented. AIG and many other CDS sellers were thus highly exposed to systemic credit contagion, a situation in which defaults in one area of an economy ripple into another, accompanied by bank weaknesses and failures, rapidly falling equity markets, rising credit risk premiums, and a general loss of confidence in the financial system and the economy. These presumably well-diversified risks guaranteed by CDS sellers, operating as though they were insurance companies, ultimately proved to be poorly diversified. Systemic financial risks can spread more rapidly than fire, health, and casualty risks. Virtually no other risks, except those originating from wars or epidemics, spread in the manner of systemic financial risks.
Thus, to understand and appreciate the importance of the CDS market, it is necessary to recognize how that market can fail. The ability to separate and trade risks is a valuable one. Banks can continue to make loans to their customers, thereby satisfying the customers’ needs, while laying off the risk elsewhere. In short, parties not wanting to bear certain risks can sell them to parties wanting to assume certain risks. If all parties do their jobs correctly, the markets and the economy work more efficiently. If, as in the case of certain CDS sellers, not everyone does a good job of managing risk, there can be serious repercussions. In the case of AIG and some other companies, taxpayer bailouts were the ultimate price paid to keep these large institutions afloat so that they could continue to provide their other critical services to consumers. The rules proposed in the new OTC derivatives market regulations – which call for greater regulation and transparency of OTC derivatives and, in particular, CDSs – have important implications for the future of this market and these instruments.
EXAMPLE 4 Options and Credit Derivatives
1. An option provides which of the following?
A. Either the right to buy or the right to sell an underlying
B. The right to buy and sell, with the choice made at expiration
C. The obligation to buy or sell, which can be converted into the right to buy or sell
2. Which of the following is not a characteristic of a call option on a stock?
A. A guarantee that the stock will increase
B. A specified date on which the right to buy expires
C. A fixed price at which the call holder can buy the stock
3. A credit derivative is which of the following?
A. A derivative in which the premium is obtained on credit
B. A derivative in which the payoff is borrowed by the seller
C. A derivative in which the seller provides protection to the buyer against credit loss from a third party
Solution to 1: A is correct. An option is strictly the right to buy (a call) or the right to sell (a put). It does not provide both choices or the right to convert an obligation into a right.
Solution to 2: A is correct. A call option on a stock provides no guarantee of any change in the stock price. It has an expiration date, and it provides for a fixed price at which the holder can exercise the option, thereby purchasing the stock.
Solution to 3: C is correct. Credit derivatives provide a guarantee against loss caused by a third party’s default. They do not involve borrowing the premium or the payoff.
4.2.3 Asset-Backed Securities
Although these instruments are covered in more detail in the fixed-income material, we would be remiss if we failed to include them with derivatives. But we will give them only light coverage here.
As discussed earlier, derivatives take (derive) their value from the value of the underlying, as do mutual funds and exchange-traded funds (ETFs). A mutual fund or an ETF holding bonds is virtually identical to the investor holding the bonds directly. Asset-backed securities (ABSs) take this concept a step further by altering the payment streams. ABSs typically divide the payments into slices, called tranches, in which the priority of claims has been changed from equivalent to preferential. For example, in a bond mutual fund or an ETF, all investors in the fund have equal claims, and so the rate of return earned by each investor is exactly the same. If a portfolio of the same bonds were assembled into an ABS, some investors in the ABS would have claims that would supersede those of other investors. The differential nature of these claims becomes relevant when either prepayments or defaults occur.
Prepayments mostly affect only mortgages. When a portfolio of mortgages is assembled into an ABS, the resulting instrument is called a collateralized mortgage obligation (CMO). Commonly but not always, the credit risk has been reduced or eliminated, perhaps by a CDS, as discussed earlier. When homeowners pay off their mortgages early due to refinancing at lower rates, the holders of the mortgages suffer losses. They expected to receive a stream of returns that is now terminated. The funds that were previously earning a particular rate will now have to be invested to earn a lower rate. These losses are the mirror images of the gains homeowners make when they proudly proclaim that they refinanced their mortgages and substantially lowered their payments.
CMOs partition the claims against these mortgages into different tranches, which are typically called A, B, and C. Class C tranches bear the first wave of prepayments until that tranche has been completely repaid its full principal investment. At that point, the Class B tranche holders bear the next prepayments until they have been fully repaid. The Class A tranche holders then bear the next wave of prepayments.14 Thus, the risk faced by the various tranche holders is different from that of a mutual fund or ETF, which would pass the returns directly through such that investors would all receive the same rates of return. Therefore, the expected returns of CMO tranches vary and are commensurate with the prepayment risk they assume. Some CMOs are also characterized by credit risk, perhaps a substantial amount, from subprime mortgages.
When bonds or loans are assembled into ABSs, they are typically called collateralized bond obligations (CBOs) or collateralized loan obligations (CLOs). These instruments (known collectively as collateralized debt obligations, or CDOs) do not traditionally have much prepayment risk but they do have credit risk and oftentimes a great deal of it. The CDO structure allocates this risk to tranches that are called senior, mezzanine, or junior tranches (the last sometimes called equity tranches). When defaults occur, the junior tranches bear the risk first, followed by the mezzanine tranches, and then the senior tranches. The expected returns of the tranches vary according to the perceived credit risk, with the senior tranches having the highest credit quality and the junior the lowest. Thus, the senior tranches have the lowest expected returns and the junior tranches have the highest.
An asset-backed security is formally defined as follows:
An asset-backed security is a derivative contract in which a portfolio of debt instruments is assembled and claims are issued on the portfolio in the form of tranches, which have different priorities of claims on the payments made by the debt securities such that prepayments or credit losses are allocated to the most-junior tranches first and the most-senior tranches last.
ABSs seem to have only an indirect and subtle resemblance to options, but they are indeed options. They promise to make a series of returns that are typically steady. These returns can be lowered if prepayments or defaults occur. Thus, they are contingent on prepayments and defaults. Take a look again at Exhibit 4, Panel B (the profit and payoff of a short put option). If all goes well, there is a fixed return. If something goes badly, the return can be lowered, and the worse the outcome, the lower the return. Thus, holders of ABSs have effectively written put options.
This completes the discussion of contingent claims. Having now covered forward commitments and contingent claims, the final category of derivative instruments is more or less just a catch-all category in case something was missed.
13
For example, you do not associate French dressing with France. It is widely available and enjoyed worldwide. If you dig deeper into the world of options, you will find Asian options and Bermuda options. Geography is a common source of names for options as well as foods and in no way implies that the option or the food is available only in that geographical location.
14
The reference to only three tranches is just a general statement. There are many more types of tranches. Our discussion of the three classes is for illustrative purposes only and serves to emphasize that there are high-priority claims, low-priority claims, and other claims somewhere in the middle.