Читать книгу Чотири закони, що рухають Всесвіт - Питер Аткинс - Страница 4

2. Перший закон
Збереження енергії

Оглавление

Зазвичай перший закон термодинаміки вважають найлегшим для розуміння і засвоєння. Своєю суттю він розширює зміст закону збереження енергії, вказуючи на те, що енергію не можна ані створити, ані знищити. Тобто, хай скільки енергії було на момент появи Всесвіту, наприкінці її кількість не зміниться. Однак термодинаміка доволі хитра наука, тому її перший закон набагато цікавіший, аніж може здатися на перший погляд. Ба більше, як і нульовий закон, що дав поштовх до введення властивості «температури» й вивчення її особливостей, перший закон мотивує нас ввести ще одну концепцію і допомагає ознайомитися зі значенням невловного поняття «енергії».

Припустімо, ніби від самого початку ми не маємо жодного уявлення про те, що взагалі є така властивість. Так само, як і у вступі до нульового закону, ми не припускали, ніби є щось таке, як «температура», і лише згодом з’ясували, що ця концепція була нав’язана нам як логічний наслідок цього закону. Припустімо, що з механіки й динаміки нам добре відомі хіба такі поняття, як маса, вага, сила й робота. Зокрема, ми будуватимемо нашу презентацію нової концепції на розумінні поняття «роботи».

Робота – це рух супроти протидійної сили. Ми виконуємо роботу, коли підіймаємо вагу супроти протидійної сили тяжіння. Величина виконуваної нами роботи залежить від маси предмета, дії сили тяжіння на нього і висоти, на яку його підіймають. До речі, ви самі можете бути вагою, адже ви виконуєте роботу, коли підіймаєтеся сходами. Виконувана вами робота пропорційна до вашої ваги й висоти, на яку ви підіймаєтесь. Ви також виконуєте роботу, коли їдете на велосипеді проти вітру: що сильніший вітер і що далі ви їдете, то більше роботи виконуєте. Ви також виконуєте певну роботу, коли розтягуєте чи стискаєте пружину, а кількість виконаної роботи залежить від сили пружини й довжини, на яку вона розтягується чи стискається.

Усіляка робота еквівалентна процесові підняття ваги. Наприклад, маніпуляцію з пружиною можна уявляти як розтягнення. Однак ніщо не заважає причепити до розтягнутої пружини шків і вагу, щоб подивитися, на яку висоту підійметься вага, коли пружина повертатиметься до своєї природної довжини. Величину роботи з підіймання маси m (наприклад, 50 кг) на висоту h (наприклад, 2,0 м) на поверхні Землі обчислюють за формулою mgh. У цій формулі g – це константа, відома як прискорення вільного падіння, що на рівні моря на Землі дорівнює приблизно 9,8 м/с2. Щоб підняти вагу 50 кг на висоту 2,0 м, потрібно виконати роботу величиною 980 кг · м22.

Як ми бачили в примітці на с. 26, незручне поєднання одиниць «кілограм на метр квадратний, поділений на секунду у квадраті» називають джоулем (позначається символом Дж). Отже, щоб підняти нашу вагу, ми повинні виконати роботу величиною 980 джоулів (980 Дж).

Робота – це фундаментальна опора термодинаміки й, зокрема, першого закону. Будь-яка система спроможна виконувати роботу. Наприклад, стиснута чи розтягнута пружина може виконувати роботу. Як ми зауважили раніше, її можна використовувати для підіймання ваги. Електричний акумулятор спроможний виконувати роботу, бо його можна під’єднати до електричного двигуна, який, своєю чергою, можна використати для підіймання ваги. Шматок вугілля за наявності атмосферного повітря можна використати для виконання роботи, спалюючи його як паливо в якомусь двигуні. Або візьмемо не зовсім очевидний приклад. Пропускаючи електричний струм через нагрівальний пристрій, ми виконуємо над ним роботу, бо той же струм ми могли б використати для підіймання ваги, якби пропустили його через електродвигун, а не через нагрівальний пристрій. Чому пристрій називають «нагрівальним», а не «робочим», стане зрозуміло, щойно ми введемо поняття теплоти. Однак ми ще не знаємо його.

Через те що робота виступає основним поняттям у термодинаміці, нам потрібен такий термін, який зможе позначити здатність системи виконувати роботу, – цю здатність ми називаємо енергією. Повністю розтягнута пружина має більшу енергію, ніж ледь розтягнута. Літр гарячої води здатний виконати більше роботи, ніж такий самий літр холодної води, адже літр гарячої води має більше енергії, ніж літр холодної води. У такому контексті в концепції енергії немає нічого загадкового – це лише міра здатності системи виконувати роботу, а ми точно знаємо, що саʹме ми розуміємо під роботою.

* * *

Тепер поширимо ці поняття з динаміки на термодинаміку. Припустімо, ми маємо систему, розміщену в адіабатних (нетеплопровідних) стінках. Ми ознайомилися з поняттям «адіабатний» у першому розділі, коли вивчали нульовий закон, тому для нас це вже знайомий термін. На практиці під «адіабатним» ми маємо на увазі теплоізольований контейнер, як-от термос із доброю теплоізоляцією. Ми можемо стежити за температурою вмісту термоса, використовуючи термометр. Поняття температури також ввели за допомогою нульового закону. Отже, ми поки що перебуваємо на знайомій території, і це дозволяє міцно стояти на ногах. Тим часом проведімо кілька експериментів.

Спершу розмішаймо вміст термоса (тобто системи) за допомогою лопаток, що рухаються завдяки спадальній вазі, і зафіксуємо зміну температури, спричинену процесом перемішування. Починаючи з 1843 року, саме такого типу експерименти регулярно проводив один із засновників термодинаміки Дж. П. Джоуль (1818–1889). Ми дізнаємося про кількість виконаної роботи, вимірявши вагу й відстань, яку вага подолала за час падіння. Потім знімаємо ізоляцію і дозволяємо системі повернутися до початкового стану. Після цього повертаємо теплоізоляцію і приєднуємо до системи нагрівач. Через нього ми пропускаємо якийсь час електричний струм, щоб врешті спричинити таку саму кількість роботи, яку виконала спадальна вага. Також можна виконати ряд інших вимірювань. Наприклад, ми можемо зіставити струм, що проходить через двигун за різні періоди часу, і виміряти висоту, на яку підіймається вага. На підставі цих даних ми можемо трактувати поєднання часу і струму як кількість виконаної роботи. Після пари цих і багатьох аналогічних експериментів ми приходимо до такого висновку: незалежно від способу виконання, однаковий обсяг роботи приводить до однакової зміни стану системи.

Цей висновок можна порівняти зі сходженням на гору різними шляхами. Кожен шлях відповідає іншому способові виконання роботи. За умови, що ми стартуємо з одного базового табору й прибуваємо в той самий пункт призначення, ми врешті-решт підіймаємося на ту саму висоту незалежно від пройденого нами шляху між цими двома точками. Тобто, взявши різницю початкової та кінцевої висот нашого підняття, ми можемо закріпити число («висоту») за кожною точкою гори й обчислити висоту, на яку ми піднялися, незалежно від шляху. Ця закономірність стосується і нашої системи. Те, що зміна стану не залежить від способу, означає, що з кожним станом системи ми можемо пов’язати певне число, яке називатимемо внутрішньою енергією (символ U). Тоді ми можемо обчислити роботу, потрібну для переміщення між будь-якими двома станами. Треба взяти різницю початкових і кінцевих значень внутрішньої енергії і записати так: потрібна робота = U(кінцева) − U(початкова) (рис. 6).

Рис. 6. Різні способи виконання роботи над системою і відповідні зміни її стану між фіксованими кінцевими точками потребують однакового обсягу роботи. Це аналогічно до сходження на гору різними шляхами, що приводить до однакової зміни висоти. Спостереження за цими аналогіями приводить до визнання наявності властивості, що її називають внутрішньою енергією.


Ми помітили, що немає значення, яким способом виконується робота, потрібна для переходу між двома визначеними станами в адіабатній системі (не забувайте, що на цьому етапі система адіабатна). Це спостереження стало поштовхом до визнання такої властивості системи, яка характеризує міру її здатності виконувати роботу. У термодинаміці властивість системи, що залежить лише від поточного стану системи й не залежить від того, яким чином цей стан був досягнутий (як висота в географії), називають функцією стану. Отже, наші спостереження мотивували введення функції стану під назвою «внутрішня енергія». На цьому етапі ми можемо не зрозуміти глибинну природу внутрішньої енергії. Однак ми також не зрозуміли глибинну природу функції стану, який ми назвали температурою, коли вперше зіткнулися з нею в контексті нульового закону.

Ми ще не дійшли до першого закону – для цього знадобиться трохи більше роботи, як у буквальному, так і у фігуральному сенсі. Щоб просунутися, ми далі взаємодіятимемо з тією ж системою, але тепер знімемо теплоізоляцію, щоб система перестала бути адіабатною. Припустімо, що ми знову виконаємо те саме перемішування – почавши з того ж початкового стану і до того моменту, коли система досягне того ж кінцевого стану, як раніше. Однак цього разу ми з’ясуємо, що для досягнення кінцевого стану потрібна інша кількість роботи.

Зазвичай ми з’ясовуємо, що тепер потрібно виконати більший обсяг роботи, ніж в адіабатному випадку. Це змушує нас виснувати, що внутрішню енергію може змінювати якийсь інший чинник, крім роботи. Один зі способів розглянути цю додаткову зміну – це інтерпретувати її як таку, що випливає з передавання енергії із системи в довкілля завдяки різниці температур, що виникає внаслідок виконаної нами роботи з перемішування вмісту системи. Це передавання енергії внаслідок перепадів температури називають теплотою.

Кількість енергії, що передається у формі теплоти в систему або з неї, виміряти дуже просто. Спершу ми вимірюємо роботу, потрібну для досягнення певної зміни адіабатної системи; потім вимірюємо роботу, потрібну для досягнення тієї ж зміни стану в діатермічній системі (без теплоізоляції); і нарешті визначаємо різницю двох значень. Ця різниця – це енергія, що передається у формі теплоти. Варто зазначити, що вимірювання доволі невловного поняття «теплоти» покладене на суто механічну основу. Щоб досягти заданої зміни стану за двох різних умов, потрібно створити помітну різницю у висоті падіння ваги (рис. 7).

Рис. 7. Коли система адіабатна (ліворуч), задана зміна стану досягається за допомогою певного обсягу роботи. Коли в тій же системі досягається така ж задана зміна стану в неадіабатному контейнері (праворуч), то потрібно виконати більше роботи. Різниця дорівнює енергії, втраченій у формі теплоти.


Ми вже впритул підійшли до першого закону. Припустімо, ми маємо закриту систему й використовуємо її для виконання певної роботи або дозволяємо їй вивільняти енергію у формі теплоти. Її внутрішня енергія зменшується. Потім ми на вибраний час залишаємо систему ізольованою від довкілля, а пізніше повертаємося до неї. Ми незмінно з’ясуємо, що її здатність виконувати роботу (тобто внутрішня енергія) не повернулася до початкової величини. Інакше кажучи,

внутрішня енергія ізольованої системи зберігає сталу величину.

Це і є перший закон термодинаміки, чи, принаймні, одне з його формулювань, адже закон має багато еквівалентних форм.

Ще один універсальний закон природи, цього разу людської природи, полягає в тому, що перспектива багатства спонукає до обману. Багатство – і незліченні вигоди для людства – нагромаджувалося б до незліченної міри, якби перший закон не справджувався за певних умов. Наприклад, він виявився б помилковим, якби адіабатна закрита система була здатна генерувати певну роботу без зменшення своєї внутрішньої енергії. Інакше кажучи, якщо нам вдасться створити вічний двигун, то він виконуватиме роботу без споживання палива. А втім, попри величезні зусилля і безліч спроб, людство таки не змогло створити вічний двигун. Звісно, повсякчас з’являлося вдосталь патентних заяв про його створення, але всі вони містили в собі певний елемент шахрайства чи обману. Тепер патентні відомства не приймають до розгляду будь-які проєкти подібних машин, адже перший закон вважають непорушним. Заяви про начебто подолання цього закону не варті того, щоб витрачати на них час і зусилля. У науці, зокрема в техніці, певна обмеженість поглядів, мабуть, цілком виправдана. І це якраз той випадок.

* * *

Перш ніж ми залишимо перший закон, нам варто навести лад у термінології та попрактикуватися. Насамперед розберімося з використанням терміна «тепло». У повсякденній мові ми вживаємо слова «тепло» і «нагрівання». Коли теплота переміщається, то ми щось нагріваємо. У термодинаміці «тепло» – це не речовина чи навіть форма енергії, не якась рідина чи щось подібне, а спосіб передавання енергії завдяки різниці температур. Теплота – назва процесу, а не речовини.

Щоденні розмови були б доволі кумедними, якби ми наполягали на точному використанні слова «тепло». У побуті надзвичайно зручно говорити про тепло, що перетікає з одного місця в інше, і про нагрівання предмета. Часто можна почути вираз: «Тепло розтікається». Раніше повсякденне вживання такого формулювання пояснювалося тим, що люди вважали тепло певною рідиною, яка перетікає між предметами з різною температурою.

Справді, є чимало аспектів переміщування енергії за низхідними градієнтами температури, які можна математично обчислити, трактуючи тепло як потік безмасової («невагомої») рідини. Однак по суті це збіг обставин, а не ознака того, що тепло насправді рідина. За допомогою подібних рівнянь можна обчислювати навіть поширення споживацьких смаків серед населення.

Повторювати одне й те саме – доволі нудне заняття, але все-таки нагадаємо ще раз: енергія передається у формі тепла (тобто як наслідок різниці температур). Дієслово «нагрівати» для більшої точності варто було б замінити багатослівним висловом на кшталт «Ми спричиняємо різницю температур, щоб енергія протікала через діатермічну стінку в потрібному напрямі». А втім, життя занадто коротке. За винятком тих випадків, коли ми потребуватимемо цілковитої точності, ліпше застосовувати легший варіант із повсякденної мови. Тож, сподіваючись на краще, дозволимо собі таку легковажність, але не забуваймо, як саме треба тлумачити цей «евфемізм».

Чотири закони, що рухають Всесвіт

Подняться наверх