Читать книгу Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность - Пол Халперн - Страница 5

Введение
Революция во времени
Квантовые профили

Оглавление

Файн-холл (ныне он именуется Джонс-холл) расположен в миле к востоку, если идти через кампус Принстона от Градуэйт-колледжа, и это короткая прогулка для энергичного молодого человека. Построенный специально для математического факультета, дом щеголяет окнами в тяжелых, древних рамах, украшенных математическими символами.

Осенью 1939 года в Файн-холле находились кабинеты нескольких физиков-теоретиков, среди них были Юджин Вигнер и Джон Уилер. До весны того года он служил домом для института перспективных исследований (ИПИ), независимого «резервуара» для мыслителей, в котором числились Альберт Эйнштейн, венгерский математик Джон фон Нейман, австрийский математик Курт Гёдель и многие другие научные знаменитости.

Для Эйнштейна, самого известного исследователя, ИПИ был чем-то вроде монастыря, где он мог без помех заниматься своими работами в области общей теории гравитации и электромагнетизма, и в то же время критиковать теории коллег в области квантовой механики: той физики, что касается поведения атомов и субатомных частиц. Постоянные возражения против квантовых «бросков кости», когда все определяется случайностью, и вера в чистый детерминизм отделяли Эйнштейна от большей части научного сообщества, он шел против основного потока.

Детерминизм в данном контексте означает, что если известны начальные параметры некоей физической системы, такой как маятник или струна, то возможно с абсолютной точностью предсказать, что случится с ней в любой момент в будущем. Эйнштейн стремился «укомплектовать» квантовую механику, исключив из вычислений любые элементы случайности.

Фон Нейман, наоборот, придерживался более продвинутого взгляда на квантовую механику, в котором детерминизм и случайность играли важную роль на разных стадиях. В своей классической работе 1932 года «Математические основы квантовой механики» он представил двухэтапную схему анализа квантовых процессов.

Перед тем как исследователь приступит к измерениям в некоей квантовой системе, такой как электрон или атом, ее динамика выглядит текучей и предсказуемой. Но едва он щелкнет включателем на приборе – запустит мощный магнит, например – и начнет снимать показания, в дело вступает случайность, и результат может быть одним из многих, столь же случайным, как исход броска монетки.

Почему исследователь играет такую важную роль? Почему он влияет на систему? Может некто быть только наблюдателем? Может ли наблюдатель быть частью системы?

Эти вопросы входили в сферу того, что именовали «проблемой измерений в квантовой механике».

И проблема эта выглядела на редкость коварной.

В отличие от классической механики, в квантовой невозможно получить прямой доступ ко всей информации о частице – о ее местоположении, скорости и т. д. Поэтому нужно рассматривать сущность, именуемую «волновой функцией», содержащую всю информацию о квантовом состоянии частицы.

Но волновая функция предлагает не точные значения, а некие вероятностные распределения, показывающие шансы на то, что частица проявит те или иные характеристики в процессе измерений (технически говоря, квадрат волновой функции дает распределение вероятностей). Пики демонстрируют наиболее вероятные значения, а между ними лежат те значения, шансов получить которые не так много.

В целом диаграмма распределения вероятностей имеет вид перевернутого колокола и показывает, что если вы подбросите четыре монетки, наиболее вероятной комбинацией будут две решки и два орла в любом порядке, а наименее вероятной – четыре решки или четыре орла.

Как указывал фон Нейман, волновая функция испытывает влияние двух типологически разных квантовых процессов: непрерывное изменение, описанное волновым уравнением Шредингера, и дискретный «коллапс», происходящий, когда наблюдатель начинает делать измерения. Например, предположим, что наблюдатель проводит эксперимент, нацеленный на фиксацию точного местонахождения электрона. До начала эксперимента волновая функция электрона будет целиком и полностью повиноваться уравнению Эрвина Шредингера, и на долю вероятности не останется ничего. Но немедленно после момента измерения волновая функция неким случайным образом коллапсирует из распределения вероятности в острый пик, представляющий единственное значение, определяющее местоположение электрона.

Таким образом, первая разновидность процессов полностью детерминирована и обратима, вторая случайна и необратима. Они воплощают различные концепции времени: первый механизм соответствует циклическому времени классического маятника или струны, а второй – линейному, необратимому времени изнашивающейся машины, которая неизбежно когда-то остановится.

В конце тридцатых дуальная картина фон Неймана, включающая непрерывное и обратимое изменение, за которым следует мгновенный, необратимый коллапс, стала частью ортодоксального взгляда на квантовые измерения, ну а тот получил название «Копенгагенской интерпретации».

Увы, модель эта содержала чудную комбинацию из циклического и линейного времени, хотя они в принципе никак не сцепляются – представьте идеальные во всех отношениях часы, которые останавливаются навсегда, стоит только на них посмотреть. Наблюдение разрушает механизм, что неприемлемо, например, для «Ролекса», но почему-то годится для квантовой механики.

Но экспериментальные данные почти всегда соответствовали теории, и поэтому ученые большей частью просто принимали странную идею, что факт наблюдения изменяет динамику квантовой системы от предсказуемой непрерывности к случайному фазовому переходу. Лишь несколько выдающихся критиков, таких как Эйнштейн, Шредингер и Луи де Бройль (развивший собственную оригинальную идею волн материи, правдоподобно объяснившую волновое уравнение Шредингера) призывали к пересмотру схемы.

Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность

Подняться наверх