Читать книгу Невозможность второго рода. Невероятные поиски новой формы вещества - Пол Стейнхардт - Страница 5
Часть I
Делая невозможное возможным
Глава 3
Обнаружение лазейки
ОглавлениеФиладельфия, 1982–1983 годы
Важную подсказку, позволившую раскрыть секрет симметрии замощений Пенроуза, мы с Довом обнаружили в неопубликованной работе гениального математика-любителя по имени Роберт Амманн.
Он был необычным человеком, ведущим уединенный образ жизни. Способностей Амманна хватило для поступления в Университет Брандейса в середине 1960-х. Но отучился он только три года, в течение которых редко покидал свою комнату. В конце концов его отчислили, и он так никогда и не получил диплома.
В дальнейшем он самостоятельно освоил программирование компьютеров и нашел работу в области низкоуровневого программирования. К сожалению, он потерял место во время волны сокращений в компании. Тогда он стал сортировать корреспонденцию на почте, поскольку на этой работе не требовалось много общаться с людьми. Сослуживцы считали его предельно некоммуникабельным и замкнутым интровертом.
Вот только почтовые служащие наверняка не догадывались, что Амманн был настоящим математическим гением. В свободное от работы время он погружался в тот же мир развлекательной математики, что увлекал таких мэтров науки, как Роджер Пенроуз и Джон Конвей. С характерной скромностью Амманн описывал себя как “склонного к математике рисовальщика каракулей”.
Мы с Довом натолкнулись на идеи Амманна в двух коротких статьях в малоизвестных журналах, написанных Аланом Маккеем, кристаллографом и профессором материаловедения из Лондонского университета. Маккей разделял наше восхищение икосаэдром, замощениями Пенроуза и фантазиями о материалах с запрещенной симметрией пятого порядка. В этих двух статьях, напоминавших скорее спекулятивные эссе, нежели исследовательские работы, были изложены некоторые его важные соображения по этой теме. Они включали две иллюстрации, которые сразу вызвали у нас особый интерес.
На первой Маккей изобразил пару ромбоэдров – широкий и узкий, как показано на рисунке внизу. Нам с Довом эти трехмерные фигуры уже были хорошо знакомы. Это были очевидные трехмерные аналоги широких и узких ромбов, которые использовались для построения двумерных замощений Пенроуза. Так что, по-видимому, Маккей шел тем же путем, что и мы.
Однако мы были разочарованы, не обнаружив в его статье никаких правил совмещения, которые не давали бы трехмерным строительным блокам образовывать периодические кристаллические структуры. Для нас с Довом главной задачей был как раз поиск этих особых правил совмещения. Без них атомы могли бы по-прежнему соединяться в одну из нескольких обычных кристаллических структур, вместо того чтобы вынужденно образовывать невозможную структуру, которую мы надеялись открыть.
Нас также заинтриговала другая иллюстрация, опубликованная Маккеем (здесь не приводится). Это была фотография дифракционной картины, порожденной при прохождении лазерного луча через изображение замощения Пенроуза. На снимке Маккея было видно, что сложный дифракционный узор включает отдельные особенно яркие пятна, и некоторые из них расположены в углах десятиугольника, а некоторые другие – в углах пятиугольника. Однако мы не могли определить, четкие это точки или расплывчатые сгущения и расположены ли они вдоль идеально прямых линий.
Для физиков вроде нас с Довом эти детали были чрезвычайно важны. Четкие точки, выстроенные идеально прямыми рядами в сочетании с группами пятен, образующими правильные десятиугольники и пятиугольники, – это была бы невиданная прежде дифракционная картина. И главное, она указывала бы на такое расположение атомов, с которым никто еще не встречался.
Размытые пятна с неидеальным выравниванием были бы уже не столь захватывающими. Они указывали бы на сочетание порядка и беспорядка в расположении атомов, подобно тем структурам, которые мы уже изучали с Дэвидом Нельсоном, а не на новую форму вещества.
Разумеется, мы с Довом надеялись на первый вариант, который свидетельствовал бы о чем-то поистине новом. Мы связались с Маккеем, чтобы расспросить о правилах совмещения и точной математической природе дифракционной картины на его фото, однако у него не нашлось ответов на наши вопросы. По его словам, математика не была его сильной стороной. Поэтому он не знал, как доказать, были ли дифракционные пятна от замощения Пенроуза идеально четкими или расплывчатыми. Он также признался, что у него есть лишь одна фотография, и это было печально, поскольку на снимках всегда есть небольшие искажения. Так что у него не было уверенности относительно дифракционных свойств.
Маккей также сообщил нам, что широкие и узкие ромбоэдры в его статье не были его собственным изобретением. Он позаимствовал их непосредственно из работы одного малоизвестного любителя – Роберта Амманна. Именно тогда мы впервые услышали имя этого загадочного гения, который мало с кем общался, кроме гуру развлекательной математики Мартина Гарднера из Scientific American, к кому Маккей и посоветовал нам обратиться за помощью.
Дов немедленно написал Гарднеру, а тот, в свою очередь, отправил нас к Бранко Грюнбауму и Джеффри Шепарду, которые как раз готовили к выпуску книгу о замощениях, куда вошли некоторые из гениальных изобретений Амманна. От них мы узнали, что Амманн независимо изобрел ромбоидные плитки, похожие на открытые Пенроузом, с правилами совмещения, вынуждающими к образованию симметрии пятого порядка. Что еще поразительнее, он также изобрел другой набор плиток с правилами совмещения, вынуждающими к столь же невозможной симметрии восьмого порядка.
У Амманна не было математического образования, поэтому он не предоставил никаких доказательств того, что его правила совмещения работают, и даже не описал свои результаты в научной статье. Он просто интуитивно знал, что прав.
Гарднер также предоставил нам заметки Амманна, в которых подробно излагались его соображения о строительных блоках с икосаэдрической симметрией. Но и тут не было ни строгих доказательств, ни даже попыток привести убедительные аргументы.
Несколько лет спустя мы с Довом смогли разыскать неуловимого гения в окрестностях Бостона и уговорили его приехать к нам в Филадельфию. Амманн оказался именно таким, каким я его себе и представлял. Он был полон творческих геометрических идей и захватывающих предположений, которые никогда не публиковались, но очень часто оказывались верными. Некоторые из них, как, например, идея ромбоэдров, впервые появившаяся на иллюстрации Маккея, были открыты независимо нами с Довом ценой тяжелого труда и утомительного поиска доказательств. Для Амманна все это было попросту интуитивно очевидно. К сожалению, несколько лет спустя его не стало, так что нам с Довом не довелось больше с ним увидеться.
Самым важным его изобретением, на наш с Довом взгляд, было введение названных его именем полос Амманна – могучего и действенного правила совмещения. На широких и узких ромбах с прямыми сторонами Амманн рисовал набор полосок в соответствии со строгим рецептом, проиллюстрированным пунктирными линиями на рисунке вверху.
Правило совмещения Амманна состоит в том, что две плитки можно соединять между собой только в том случае, если на всех краях, которыми они стыкуются, нанесенные на них полосы продолжают друг друга. Это накладывает того же типа ограничения, что и пенроузовские ленты и замки. Так что на первый взгляд тут нет ничего примечательного.
Однако при более внимательном анализе становится ясно, что полосы Амманна все меняют. Мы с Довом обнаружили, что они выявляют в замощениях Пенроуза нечто такое, чего сам Пенроуз не заметил. И именно это забросило нас с Довом в странный новый мир невозможных симметрий.
Мы видели, что при стыковке плиток в соответствии с правилом совмещения отдельные полосы Амманна соединяются и образуют прямые линии Амманна, которые тянутся через все замощение. Ниже изображено замощение, поверх которого наложена система линий Амманна. Этот массив состоит из пяти наборов параллельных линий, ориентированных под разными углами.
Мы с Довом обнаружили, что все эти пять наборов прямых одинаковы и повернуты друг к другу под такими же в точности углами, как стороны правильного пятиугольника. Нельзя было и представить себе более простого доказательства наличия у данного замощения симметрии пятого порядка.
Для нас с Довом это был поистине захватывающий момент. Теперь мы точно знали, что находимся на пути к открытию, которое прямо противоречит столетним теоремам Гаюи и Браве. Мы были уверены, что линии Амманна таят в себе ключ к обходу этих надежно доказанных теорем и к объяснению секрета симметрии замощений Пенроуза. Но нам еще только предстояло расшифровать их смысл.
Важнее всего оказалось сосредоточиться лишь на одном из пяти наборов прямых линий, например на том, который выделен на рисунке справа. Видно, что просветы между этими параллельными линиями Амманна бывают двух размеров – широкие (W) и узкие (N). Для нас самыми важными были две величины: отношение между ширинами этих двух типов просветов и частота, с которой они повторяются на рисунке. Мы были на пороге открытия того, что эти две величины – отношение и последовательность – связаны с двумя знаменитыми математическими понятиями: золотым сечением и числами Фибоначчи.
Золотое сечение часто обнаруживается в природе и с древних времен встречается в искусстве. Считается, что египтяне руководствовались им при строительстве великих пирамид. В V веке до нашей эры греческий скульптор и математик Фидий утверждал, что применял золотое сечение при создании Парфенона в Афинах, который сегодня считается величайшим памятником греческой цивилизации. В память о Фидии это отношение часто обозначают греческой буквой Φ (произносится как “фи”).
Греческому математику Евклиду, которого считают отцом геометрии, принадлежит самое раннее сохранившееся определение золотого сечения с использованием простых объектов. Он рассматривал способы разделить палку на две части таким образом, чтобы соотношение короткого и длинного кусков было равно соотношению длинного и их суммарной длины. Найденное Евклидом решение состоит в том, что более длинный кусок должен быть ровно в Φ раз больше короткого, где Φ равно
и выражается бесконечной неповторяющейся последовательностью десятичных цифр.
Числа, представляемые бесконечными непериодическими десятичными дробями, называются иррациональными, поскольку их нельзя выразить отношением двух целых чисел. Это отличает их от рациональных чисел, таких как 1/3 или 143/548, которые представляют собой отношения целых чисел и в десятичной форме записываются как 0,333… и 0,26094890510948905109… соответственно, то есть содержат периодически повторяющиеся последовательности цифр, если вычислить достаточное их количество.
Впрочем, появление золотого сечения в симметрии пятого порядка в замощении Пенроуза не то чтобы сильно поразило нас с Довом, поскольку это соотношение напрямую связано с геометрией пятиугольника. Например, на левом рисунке внизу отношение длины верхнего отрезка, соединяющего противоположные вершины пятиугольника, к длине одной из его сторон равно золотому сечению. Икосаэдр, изображенный справа, также заключает в себе золотое сечение: его двенадцать вершин образуют три взаимно перпендикулярных прямоугольника, у каждого из которых отношение длины к ширине равно золотому сечению.
По-настоящему удивило нас с Довом то, что мы обнаружили золотое сечение также и в чередовании широких (W) и узких (N) просветов.
Рассмотрим последовательность просветов W и N на рисунке со страницы 71. В ней нет никакого регулярного повторения. Если вы станете подсчитывать количество W и N, следя за соотношением этих чисел, то после учета первых трех просветов получите отношение 2 к 1, после первых пяти – 3 к 2, после первых восьми – 5 к 3 и так далее.
Есть простое арифметическое правило, которое порождает эту последовательность. Возьмем первое отношение – 2 к 1. Сложим эти два числа (2 + 1 = 3) и затем сравним сумму (3) с большим из двух исходных чисел (2). Получится новое отношение – 3 к 2, которое также оказывается очередным в последовательности, полученной для просветов. Сложим следующие два числа (3 + 2 = 5) и снова сравним результат с большим из двух предыдущих чисел – получим отношение 5 к 3.
Этот процесс можно продолжать бесконечно, получая соотношения 8 к 5, 13 к 8, 21 к 13, 34 к 21, 55 к 34 и так далее. Эти соотношения будут в точности предсказывать последовательность для амманновских просветов.
Мы с Довом сразу узнали эту последовательность целых чисел: 1, 2, 3, 5, 8, 13, 21, 34, 55, … Она известна как числа Фибоначчи и названа в честь итальянского математика Леонардо Фибоначчи, жившего в Пизе в XIII веке.
Отношения последовательных чисел Фибоначчи – 2:1, 3:2, 5:3, … – это отношения целых чисел, а значит, они рациональные. Однако знаменитое свойство последовательности Фибоначчи состоит в том, что чем больше становятся целые числа, тем ближе их отношение подходит к золотому сечению. Такова его связь с числами Фибоначчи.
Как оказалось, единственный способ получить такое чередование W и N, которое воспроизводит числа Фибоначчи, состоит в том, чтобы по мере распространения замощения Пенроуза по всем направлениям просветы W повторялись с большей частотой, чем N, в соотношении, в точности равном золотому сечению – иррациональному числу. Если коротко, то именно в этом и состоит секрет замощения Пенроуза.
Последовательность, состоящая из двух элементов, повторяющихся с разными частотами, отношение которых выражается иррациональным числом, называется квазипериодической. Квазипериодическая последовательность никогда не повторяется в точности.
Например, нет таких двух просветов в последовательности Фибоначчи, которые были бы окружены одинаково расположенными наборами просветов с ширинами W и N, хотя в некоторых случаях надо зайти достаточно далеко, чтобы обнаружить различия. То же относится и к плиткам Пенроуза. Отследите замощение достаточно далеко, и вы обнаружите, что никакие две плитки не будут окружены в точности одинаковой конфигурацией других.
Наконец-то мы с Довом поняли, где именно пролегает путь в обход вековых правил Гаюи и Браве. Фундаментальная теорема кристаллографии гласит: если схема расположения плиток или атомов является периодической, повторяющейся с одной определенной частотой, то возможны только некоторые симметрии. В частности, симметрия пятого порядка по любому направлению совершенно невозможна для периодических конфигураций атомов. Тут следует говорить о невозможности первого рода, то есть об абсолютно непреложной истине, подобно тому как 1 + 1 ни при каких условиях не может дать 3.
Однако, когда ученые уверяли целые поколения студентов, что симметрия пятого порядка невозможна ни для какого типа материи, это был уже пример невозможности второго рода – такое утверждение опиралось на допущение, которое не всегда корректно. В данном случае физики и материаловеды безосновательно полагали, что все упорядоченные конфигурации атомов являются периодическими.
Как стало ясно нам с Довом, замощение Пенроуза – это геометрический пример упорядоченной конфигурации, которая не является периодической. Это квазипериодический порядок плиток или атомов, который описывается двумя различными частотами повторения с иррациональным отношением между ними. Это и была наша заветная лазейка. Прежде ученые считали, что атомы в веществе всегда располагаются либо периодически, либо беспорядочно. Они никогда не рассматривали квазипериодические конфигурации.
Если настоящие атомы могли каким-то образом организоваться в структуру, которая повторяется с двумя разными частотами, находящимися в иррациональном соотношении, то получилась бы совершенно новая форма вещества, которая пошатнула бы устоявшиеся правила Гаюи и Браве.
Эта концепция казалась очень простой и вместе с тем невероятно глубокой. Перед нами с Довом словно открылось магическое окно, заглянуть в которое могли только мы.
Я знал, что там, вдали, открывается целое поле потенциальных новых прорывов. И пока все это поле могли исследовать мы и только мы.