Читать книгу The Doppler Method for the Detection of Exoplanets - Professor Artie Hatzes - Страница 5

Contents

Оглавление

Preface

Acknowledgments

Author biography

1 Introduction

1.1 The Dawn of Doppler Measurements

1.2 Early Work on Stellar Radial Velocity Measurements

1.3 Toward Precise Stellar Radial Velocity Measurements

1.4 The Early Hints of Exoplanets

1.5 The 51 Peg Revolution

1.6 The Doppler Method

References

2 The Instruments for Doppler Measurements

2.1 Echelle Spectrographs

2.1.1 Gratings

2.1.2 Cross-dispersers

2.1.3 Dispersion and Spectral Resolution

2.1.4 The Blaze Function

2.1.5 Scattered Light

2.2 Fourier Transform Spectrometers

2.3 Charge-coupled Device Detectors

2.3.1 The Structure and Operation of a CCD

2.3.2 Quantum Efficiency

2.3.3 Bias Level

2.3.4 Gain

2.3.5 Readout Noise and Dark Current

2.3.6 Charge Transfer Efficiency

2.3.7 Linearity

2.3.8 Flat Fielding

2.3.9 Saturation and Blooming

2.3.10 Fringing

2.3.11 Persistence

References

3 Factors Influencing the Radial Velocity Measurement

3.1 Instrumental Characteristics

3.1.1 Wavelength Coverage

3.1.2 Signal-to-noise Ratio

3.1.3 Resolving Power

3.2 Stellar Characteristics

3.2.1 Stellar Rotational Velocity

3.2.2 Spectral Line Strength

3.2.3 Number Density of Spectral Lines

3.3 RV Precision across Spectral Types

3.3.1 Radial Velocities of High-mass Stars

3.3.2 Radial Velocities of Low-mass Stars

References

4 Simultaneous Wavelength Calibration

4.1 Instrumental Shifts

4.2 Hollow Cathode Lamps

4.2.1 Th–Ar

4.2.2 HCL in the Infrared

4.3 The Telluric Method

4.4 Gas Absorption Cells

4.4.1 The Hydrogen Fluoride Cell

4.4.2 The Iodine Absorption Cell

4.4.3 Absorption Cells at Infrared Wavelengths

4.5 Laser Frequency Combs

4.6 Fabry–Pérot Etalons

4.7 The RV Precision of Modern Spectrographs

References

5 Calculating the Doppler Shifts: The Cross-correlation Method

5.1 Mathematical Formalism

5.2 Choice of Template

5.2.1 Standard Stars

5.2.2 Synthetic Masks

5.2.3 Self-templates

5.2.4 Mismatched Template and Stellar Spectra

5.3 CCF Detection of Spectroscopic Binaries

5.4 Fahlman–Glaspey Shift Detection

References

6 The Iodine Cell Method

6.1 The Instrumental Profile

6.2 Modeling the IP with the Iodine Cell Method

6.3 Influence of Changes in the IP

6.4 Ingredients for the Iodine Cell Method

6.4.1 The Fiducial

6.4.2 The Template

6.5 Calculation of the Doppler Shift

6.6 Construction of an Iodine Cell

6.7 Closing Remarks

References

7 Frequency Analysis of Time Series Data

7.1 Introduction

7.2 The Discrete Fourier Transform

7.2.1 Convolution

7.2.2 Visualizing Fourier Transforms

7.3 The Lomb–Scargle Periodogram

7.4 The Generalized Lomb–Scargle Periodogram

7.5 The Bayesian Generalized Lomb–Scargle Periodogram

7.6 Comparison of the Types of Periodograms

7.7 The Spectral Window

7.8 The Nyquist Frequency and Aliasing

7.9 Frequency Resolution

7.10 Assessing the Statistical Significance

7.10.1 Using the Lomb–Scargle Periodogram

7.10.2 Using the Fourier Amplitude Spectrum

7.10.3 Bootstrap Randomization

7.11 Finding Multiperiodic Signals in Your Data

7.12 Required Number of Observations

7.13 Frequency versus Period

References

8 Keplerian Orbits

8.1 Orbital Parameters

8.2 Describing the Orbital Motion

8.3 The Radial Velocity Curve

8.4 The Mass Function

8.5 Mean Orbital Inclination

8.6 Eccentric Orbits

8.6.1 Observing Biases Caused by Eccentric Orbits

8.6.2 Eccentric Orbits in the Fourier Domain

8.6.3 Keplerian Periodograms

8.7 Calculating Keplerian Orbits

8.7.1 Transiting Planets

8.8 Dynamical Effects

8.8.1 Dynamical Stability

8.8.2 Planet Interactions

8.9 Barycentric Corrections

References

9 Avoiding False Planets: Rotational Modulation

9.1 Introduction

9.2 Spots

9.3 Plage and Faculae

9.4 Granulation and Convective Blueshift

9.4.1 The Sun Viewed as a Star

9.4.2 Velocity Spots

9.5 Testing for Rotational Modulation

9.5.1 Determining the Rotation Period of the Star

9.5.2 Evolution of Statistical Significance

9.5.3 Amplitude Variations

References

10 Avoiding False Planets: Indicators of Stellar Activity

10.1 Activity Indicators

10.1.1 Ca II H & K

10.1.2 Hα

10.1.3 Na D

10.1.4 TiO Bands

10.1.5 Hydroxyl 1.563 μm Absorption

10.2 Line Depth Ratios

10.3 Spectral Line Shapes

10.3.1 Line Bisectors

10.3.2 Line Widths

10.4 Chromatic RV Variations

10.5 Use of Individual Lines

10.5.1 Radial Velocities

10.5.2 Convective Blueshifts versus Line Strength

10.6 Radial Velocity Jitter

10.6.1 RV Jitter and Orbit Fitting

10.6.2 Sources of Jitter

10.6.3 Stellar Oscillations

10.6.4 Activity Jitter

10.7 Activity Cycles

10.8 Concluding Remarks

References

11 Dealing with Stellar Activity

11.1 Fourier Filtering

11.1.1 The Pitfalls of Prewhitening

11.2 High Pass Filtering

11.2.1 Local Trend Fitting

11.2.2 Floating Chunk Offset

11.3 Gaussian Processes

11.4 A Short Comparison of Filtering Methods

11.5 The RV Challenge

11.6 Toward Earth Analogs

References

12 Contributions to the Error Budget

12.1 Guiding Errors

12.2 Changes in the Instrumental Setup

12.3 Detector Errors

12.3.1 Electronic Noise Pickup

12.3.2 CCD Inhomogeneities and Discontinuities

12.3.3 Charge Transfer Effects

12.4 Errors in the Barycentric Correction

12.4.1 Inaccurate Time of Observations

12.4.2 Inaccurate Telescope Coordinates

12.4.3 Inaccurate Stellar Positions

12.4.4 Differential Barycentric Motion

12.5 The Secular Acceleration

12.6 Telluric Line Contamination

12.7 Moonlight Contamination

References

13 The Rossiter–McLaughlin Effect

13.1 Introduction

13.2 Origin of the Rossiter–McLaughlin Effect

13.3 The Rossiter–McLaughlin Effect in Exoplanets

13.3.1 The Radial Velocity Amplitude

13.3.2 The Spin–Orbit Alignment

13.4 Spin Axis of the Star

References

The Doppler Method for the Detection of Exoplanets

Подняться наверх