Читать книгу The Doppler Method for the Detection of Exoplanets - Professor Artie Hatzes - Страница 5
Contents
Оглавление1 Introduction
1.1 The Dawn of Doppler Measurements
1.2 Early Work on Stellar Radial Velocity Measurements
1.3 Toward Precise Stellar Radial Velocity Measurements
1.4 The Early Hints of Exoplanets
2 The Instruments for Doppler Measurements
2.1.3 Dispersion and Spectral Resolution
2.2 Fourier Transform Spectrometers
2.3 Charge-coupled Device Detectors
2.3.1 The Structure and Operation of a CCD
2.3.5 Readout Noise and Dark Current
2.3.6 Charge Transfer Efficiency
3 Factors Influencing the Radial Velocity Measurement
3.1 Instrumental Characteristics
3.2.1 Stellar Rotational Velocity
3.2.3 Number Density of Spectral Lines
3.3 RV Precision across Spectral Types
3.3.1 Radial Velocities of High-mass Stars
3.3.2 Radial Velocities of Low-mass Stars
4 Simultaneous Wavelength Calibration
4.4.1 The Hydrogen Fluoride Cell
4.4.2 The Iodine Absorption Cell
4.4.3 Absorption Cells at Infrared Wavelengths
4.7 The RV Precision of Modern Spectrographs
5 Calculating the Doppler Shifts: The Cross-correlation Method
5.2.4 Mismatched Template and Stellar Spectra
5.3 CCF Detection of Spectroscopic Binaries
5.4 Fahlman–Glaspey Shift Detection
6 The Iodine Cell Method
6.2 Modeling the IP with the Iodine Cell Method
6.3 Influence of Changes in the IP
6.4 Ingredients for the Iodine Cell Method
6.5 Calculation of the Doppler Shift
6.6 Construction of an Iodine Cell
7 Frequency Analysis of Time Series Data
7.1 Introduction
7.2 The Discrete Fourier Transform
7.2.2 Visualizing Fourier Transforms
7.3 The Lomb–Scargle Periodogram
7.4 The Generalized Lomb–Scargle Periodogram
7.5 The Bayesian Generalized Lomb–Scargle Periodogram
7.6 Comparison of the Types of Periodograms
7.8 The Nyquist Frequency and Aliasing
7.10 Assessing the Statistical Significance
7.10.1 Using the Lomb–Scargle Periodogram
7.10.2 Using the Fourier Amplitude Spectrum
7.10.3 Bootstrap Randomization
7.11 Finding Multiperiodic Signals in Your Data
7.12 Required Number of Observations
8 Keplerian Orbits
8.2 Describing the Orbital Motion
8.6.1 Observing Biases Caused by Eccentric Orbits
8.6.2 Eccentric Orbits in the Fourier Domain
8.7 Calculating Keplerian Orbits
9 Avoiding False Planets: Rotational Modulation
9.1 Introduction
9.4 Granulation and Convective Blueshift
9.4.1 The Sun Viewed as a Star
9.5 Testing for Rotational Modulation
9.5.1 Determining the Rotation Period of the Star
9.5.2 Evolution of Statistical Significance
10 Avoiding False Planets: Indicators of Stellar Activity
10.1.5 Hydroxyl 1.563 μm Absorption
10.5.2 Convective Blueshifts versus Line Strength
10.6.1 RV Jitter and Orbit Fitting
11 Dealing with Stellar Activity
11.1.1 The Pitfalls of Prewhitening
11.4 A Short Comparison of Filtering Methods
12 Contributions to the Error Budget
12.2 Changes in the Instrumental Setup
12.3.1 Electronic Noise Pickup
12.3.2 CCD Inhomogeneities and Discontinuities
12.3.3 Charge Transfer Effects
12.4 Errors in the Barycentric Correction
12.4.1 Inaccurate Time of Observations
12.4.2 Inaccurate Telescope Coordinates
12.4.3 Inaccurate Stellar Positions
12.4.4 Differential Barycentric Motion
12.6 Telluric Line Contamination
13 The Rossiter–McLaughlin Effect
13.1 Introduction
13.2 Origin of the Rossiter–McLaughlin Effect
13.3 The Rossiter–McLaughlin Effect in Exoplanets
13.3.1 The Radial Velocity Amplitude