Читать книгу The Planets - Professor Cox Brian - Страница 8

MERCURY
+
VENUS

Оглавление

A MOMENT IN THE SUN

ANDREW COHEN


© Shutterstock

DAYS YET TO COME

E arth sits a mere 150 million kilometres from the Sun – not too hot, not too cold, with surface temperatures ranging from minus 88 to plus 58 degrees Celsius. This ‘Goldilocks’ location has created a stability of climate that, despite the best efforts of ice ages and impacts, has allowed life to maintain an unbroken chain for nearly 4 billion years, and yet we know for certain that it cannot last.

Our Sun, like every star in the universe, is far from static. Stars have life cycles of their own and, eventually, the hydrogen fuel that powers the nuclear reactions within a star will begin to run out and the star will enter the final phases of its lifetime. It will expand, cool and change colour to become a red giant. Small stars, like our sun, will undergo a relatively peaceful and beautiful death, which will see it pass through a planetary nebula phase to become a white dwarf, which will cool down over time to leave a brown dwarf. Life on Earth has prospered through our sun’s middle years, but these optimum conditions are waning. At first the changes will be invisible, but a billion years from now they will be obvious to any life forms left on the planet – an immense sun, filling the sky, will warm and transform itself and the Earth that it shines upon. The Sun is both the giver and the taker of life on our planet.

‘What has been is what will be, and what has been done is what will be done, and there is nothing new under the sun.’

Ecclesiastes 1:9


© Fsgregs Wikimedia commons

It is one of the great paradoxes of the Universe that as the life of a star like ours begins to wane, its size and luminosity will increase. A rise in luminosity of just 10 per cent will see the average surface temperature on Earth rise to 47 degrees Celsius instead of the 15 degrees Celsius that it is today. The effect of this rise in temperature manifests in a lifting of vast amounts of water vapour from the oceans into the atmosphere, creating a greenhouse effect that could quickly and rapidly run out of control, evaporating the oceans and sending the surface temperature skyrocketing. Astrobiologist David Grinspoon explains,

The greenhouse effect is the name we give to the physical process by which planets heat up through the interaction of their atmospheres and solar radiation. Solar radiation comes in what we call the visible wave lengths, primarily wave lengths that we can see, and most atmospheric gases are very transparent to visible radiation. So light from the Sun comes through pretty much unimpeded by an atmosphere and reaches the surface of a planet. Then the surface of the planet reradiates that radiation in infrared, because planets are much cooler than the Sun. And that means they radiate at much longer wave lengths – what we call infrared. That infrared radiation doesn’t make it through an atmosphere so easily. Some of the atmospheric gases, the ones we call greenhouse gases, block infrared radiation and so therefore the more of those greenhouse gases that are in a planet’s atmosphere the harder it is for that surface radiation to make it back out into space and the more that planet will heat up.

Estimates of the timescale that will see our oceans disappear vary massively, and are heavily influenced by a multitude of factors, but few are in doubt that by the time our planet reaches its 8-billionth birthday (in 3.5 billion years’ time) the end will be in sight. With temperatures heading above a thousand degrees, life will have long disappeared from a surface that is beginning to melt under the burning Sun.


© DETLEV VAN RAVENSWAAY / SCIENCE PHOTO LIBRARY

These computer artworks show how the Earth might appear in 5–7 billion years’ time. As the Sun swells and becomes a red giant, temperatures on our planet’s surface will soar, making life untenable.


© NASA/GSFC/SDO

Our Sun is far from static, and NASA’s Solar Dynamics Observatory regularly and consistently tracks its rise to solar maximum. This composite image shows 25 shots taken between 16 April 2012 and 15 April 2013, which reveal an increase in solar activity.


© MSFC

This series of photos, captured by the Hubble Space Telescope in 2002, demonstrates the reverberation of light through space. A burst of light from an unusual star in the constellation spreads through space and reflects off surrounding dust. During this activity, the red star at the centre brightens to more than 600,000 times the Sun’s luminosity. It will continue to expand before eventually disappearing.

Astrobiologist David Grinspoon on the greenhouse effect

‘The greenhouse effect gets a bad rap these days and that’s understandable because we are tweaking it in ways we don’t fully understand, in changing the climate balance that we depend upon on this planet.

‘And yet it’s important to understand that the greenhouse effect is an essential part of what makes the Earth a habitable planet. Without some measure of greenhouse effect, Earth would be completely frozen over and life would not be possible on this planet.

‘Thirty degrees or so of a greenhouse effect on a planet like the Earth is absolutely wonderful and crucial and what keeps us alive, what makes Earth such a great place for life because it keeps us in that liquid water zone.

‘But, of course you can have too much of a good thing, look at Venus for a possible image of Earth’s future, if we’re not careful.’

Moving even further into the future the outlook becomes bleaker. As the Sun enters old age it will grow into a red giant, engulfing the Earth within its expanding atmosphere. Moonless, lifeless and perhaps reduced to its inner core, our planet and the civilisations it once harboured will be nothing but a distant memory, etched in the atoms that made us all as they are dispersed amongst the cosmos.

For planet Earth, the clock is ticking and time is slowly running out, but ours is far from the only world to enjoy its moment in the sun. Across the history of our Solar System, stretching deep into its ancient past and reaching far into its future, we see stories of worlds in a constant battle with our ever-changing star. Close in, ancient worlds such as Mercury, which long ago lost their fight with the Sun, are taunted by views of Earth, and what might have been. Further out and even hotter, Venus circles, shrouded in a choking cloak of cloud, and even further beyond the Earth, Mars sits cold and barren. Beyond these planets, frozen worlds await, huddled in perpetual hibernation; anticipating the moment when the warmth of the Sun reaches out far enough, with sufficient heat, to trigger a first spring. On that day, mountains of ice will melt, rivers of water will flow, and where there was once only bleakness, in the distant future on planets once frozen and lifeless we might find a place that looks very much like home.

The story of our Solar System is not as we once thought it – eternal and unchanging. Instead it is a place of endless transformation. It is a narrative that repeats itself with a predictable rhythm, and as one world passes, another comes into the light. Only one planet has maintained stability for almost the entire life of the Solar System: the Earth has remained habitable for at least 4 billion years while change has played out all around it. What makes the Earth so lucky compared to all of its terrestrial siblings? To answer that question we need to look not just at our planet but at the whole of the Solar System, going right back to the very beginning.


© NASA, ESA, and K. Noll (STScI)

The last colourful hurrah of a star. Ultraviolet light from the dying star causes a glow around the white dwarf at the centre, where the star has burned out. This planetary nebula tells the story of the demise of our own Sun.

IN THE BEGINNING


© NASA/JPL-Caltech

This artist’s image represents a dead star known as a pulsar. The disc of rubble that surrounds it resembles the protoplanetary discs of gas and dust that are found around young stars, which collide and coalesce under the gravitational force of attraction to create young planets.

For the first few million years after its birth, there were no terrestrial worlds to see the Sun rise, and there were no days, no nights, no circular tracks around it. Instead, surrounding our infant star was a vast cloud of dust and gas. A tiny fraction of the material left over from the Sun’s formation, this swirling cloud would one day coalesce to form the various planets of the Solar System, and many other smaller bodies, but at this time, 4.7 billion years ago, there was nothing but tiny specks of dust reflecting back the light of our slowly growing star.

Only time – vast amounts of empty time – would allow enough of this gas and dust to catch and cluster, randomly forming the smallest of seeds. Most of these seeds would hardly get the chance to grow at all, smashed apart and returned to the immense swirl of dust from whence they arose. Just a few would grow big enough and survive long enough to capture and condense more of the cloud, slowly increasing their mass and density.

We still do not fully understand the process by which grains of dust no thicker than a human hair can amass to become rocky objects the size of a car, and as yet no model exists to explain this part of the evolution of a planet. But what we do know is that once that disc of gas and dust becomes populated with clumps of rock that make it past the ‘metre-size barrier’, a powerful force comes into play to propel the process forward. These newly formed planetesimals are big enough to allow the great sculpting force of gravity to draw the clumps together, growing to sizes of over a kilometre in length. Swirling around the Sun, thousands upon thousands of these objects live and die, colliding and coalescing under the increasing gravitational forces of attraction until eventually just a few emerge as planetary embryos, moon-sized bodies known as protoplanets. In the last violent steps of the process of planetary birth these protoplanets swirl around in crowded orbits, and many are destroyed, returned to the dust of their origins, but occasionally when a collision brings two or more of these giant objects together, the size of this mass of rock becomes big enough for gravity to pull it in from all sides, creating a sphere of newly formed rock, a new world. In that moment a planet is born.

Each of the terrestrial planets in our Solar System was born this way. They are the survivors of a process that destroys far more worlds than it ever creates, and which left just four rocky planets remaining – starting closest to the Sun with Mercury, then Venus, Earth and finally, farthest out, the cold and dead world of Mars. Today these four worlds all look vastly different, and yet all were created the same way, made up of the same ingredients and orbiting the same star. So why have they ended up so distinct from each other, and with such starkly different environments? And what makes this place, the Earth, so unique, the only one of the rocks that has blossomed with life? To understand, we have to look deep into the past of our Solar System, to explore the unique history of each of the planets by means of amazing feats of human engineering across billions of miles, and into environments of unknown and unimaginable extremes.


© NASA/JPL-Caltech

EXPLORING MERCURY

Getting to the smallest planet in the Solar System is anything but easy. Skirting past the Sun at a distance of just 46 million kilometres at the closest point in its orbit, Mercury is a planet that is not only held deep in the gravitational grip of our massive star but is also moving at an average orbital speed of 48 kilometres per second (km/s), by far the fastest-orbiting planet in the Solar System and far outpacing the Earth’s more leisurely 30 km/s. It needs to whip around this quickly, otherwise it would have fallen into the Sun’s embrace long ago, but the combination of its speed and position make it a planet that’s immensely difficult to get close to, and even harder to get into orbit around. In order to do so, you have to travel fast enough to catch up with Mercury but not so fast that you cannot somehow slow down to prevent a headlong descent into the Sun, and that challenge has meant that until relatively recently it was the least explored of all the terrestrial planets.

For many decades our first and only close-up glimpse of the innermost rock orbiting the Sun came from the Mariner 10 spacecraft, when on three separate occasions in 1974 and 1975 it briefly flew past Mercury. This was the first spacecraft to use another planet to slingshot itself into a different flightpath, using a flyby of Venus to bend its trajectory to allow it to enter an orbit that would bring it near enough to Mercury to photograph it close up. Clad in protection to ensure it could survive the intense solar radiation and immense extremes of temperature, Mariner 10 was able to send back the first detailed images of Mercury as it flew past at just over 200 miles above its surface. It passed by the same sunlit side of Mercury each time, so it was only able to map 40 to 45 per cent of Mercury’s surface.


© Shutterstock


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

The first glimpse of Mercury from Messsenger, nearly 40 years after Mariner 10’s historic mission.

The spacecraft took over 2,800 photos, which gave us never-before-seen views of the planet’s cratered, Moon-like surface, a surface that we had never previously been able to fully resolve through Earth-based observation. Despite the beauty of the pictures taken, it wasn’t the images from Mariner 10 that really surprised us, it was the data the probe collected relating to Mercury’s geology, which pointed to a much more surprising history of the planet than had previously been imagined. Mercury, it seemed, was far from being just a scorched husk.

Mariner was able to sense the remains of an atmosphere consisting primarily of helium, as well as a magnetic field and a large iron-rich core, opening a mystery that would remain unexplored for another 30 years. As it flew past Mercury for the last time on 16 March 1975, the transmitters were switched off and its contact with Earth silenced. Mission completed, Mariner 10 began a lonely orbit of the Sun that, as far as we know, continues to this day.

‘We have Mercury in our sights.’

MDIS Instrument team, 10.30 am EST, 9 January 2008.


© NASA / SCIENCE PHOTO LIBRARY

Mariner 10, launched on 4 November 1973 from Cape Canaveral, was the first unmanned spacecraft to fly past Mercury, managing to map half of the planet’s surface in the process through over 2,800 photos, and giving us a unique insight into its history and makeup.


© NASA/JPL


© NASA, COLOURED BY MEHAU KULYK / SCIENCE PHOTO LIBRARY

These images, both in their original glory and false-coloured, clearly show some of the thousands upon thousands of impact craters that make up the surface of Mercury.


© NASA Wikimedia Commons

This model of Mariner 10 shows the spacecraft in flight. In a highly complex mission, the craft used the gravitational pull of a planet to direct it and large solar panels acted as sails whenever scientists needed to correct Mariner’s course.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Mercury’s elliptical path around the Sun shifts slightly with each orbit, such that its closest point to the Sun moves forward with each pass. This discovery could not be verified with Newtonian physics and it took Albert Einstein’s theory of relativity to finally explain it.

At first sight many things about Mercury simply don’t make sense. During its 88-day orbit around the Sun it travels in a lopsided, elliptical orbit, which means it can be as far away from the Sun as 70 million kilometres but occasionally as close as 46 million kilometres. This is by far the most irregular of orbits of all the planets, but it is not the end of Mercury’s oddity. Temperatures at midday can rise to 430 degrees Celsius on the surface, but at night, because it’s a small planet and it has no atmosphere, temperatures fall to minus 170 degrees, giving it the greatest temperature swing of any known body in the Solar System. Its rotation is also unusual, gravitationally locked to the Sun in what is known as a 3:2 spin orbital resonance. This means the planet spins precisely three times on its axis for every two orbits, which in turn means that its day is twice as long as its year. In effect, you could be travelling over its surface at walking pace and keep the Sun at the same point in the sky as you strolled through eternal twilight.

As planetary scientist Nancy Chabot explains, ‘A day on Mercury is not like a day on Earth. It has a very unusual orbit … It has to go around the Sun twice to have one complete solar day on the planet, where the Sun goes from directly overhead to directly overhead and this actually takes 176 Earth days.’ Because of the planet’s orbit, there are places on the Mercurian surface where a hypothetical observer would be able to see the (two and a half times larger in the sky) Sun appear to rise and set twice during one Mercurian day. It rises, then arcs across the sky, stops, moves back towards the rising horizon, stops again, and finally restarts its journey towards the setting horizon.


© HarperCollins

At the end of a long, circuitous route, Messenger finally enters Mercury’s orbit on 18 March 2011, the first spacecraft to do so.

‘With the beginning today of the primary science phase of the mission, we will be making nearly continuous observations that will allow us to gain the first global perspective on the innermost planet.’

Sean Solomon, Messenger mission

Most of Mercury’s anomalies can be explained by the orbital mechanics of its journey around the Sun, except, that is, for the odd elliptical orbit that takes it on such an oval-shaped, elongated course. This irregularity has puzzled astronomers for centuries and hints at an ancient planet that was very different from the Mercury we see today.

5 … 4 … 3 Main engines start 2 … 1 … and zero and lift off of Messenger on NASA mission to Mercury … a planetary enigma in our inner solar system

To truly begin to understand Mercury’s history we had to wait nearly 40 years before we could return to her. On 18 March 2011, NASA’s Messenger spacecraft became the first to enter Mercury’s orbit, and over the next four years it succeeded in not only photographing 100 per cent of the planet’s surface, but also collecting extensive data on its geology.

But before any of this could happen, Messenger had to take perhaps the most circuitous route in the history of our exploration of the Solar System. Just passing close to Mercury to take a few snaps, as Mariner 10 did, is hard enough, but actually entering into its orbit was thought to be either too difficult to achieve or too costly to execute. As cosmochemist on the Messenger mission Larry Nittler explained, ‘There are two major challenges to getting a spacecraft into orbit around Mercury: gravity and money. When you go from Earth to Mercury, you’re falling into the gravitational well of the Sun, which makes you accelerate faster and faster as you get closer. And, if you were to go straight from Earth to Mercury, this means that you would basically just zip right by the planet, or you would need to bring an incredible amount of fuel to put the brakes on, more than you could actually afford.’


© HarperCollins

Messenger’s six-year, seven-month, 16-day journey to Mercury took it on a complex route involving several gravity assist manoeuvres before it entered the planet’s orbit.

A number of missions never made it further than pencil and paper, while others floundered and failed at the proposal stage. It was only when Chen-wan Yen, a NASA engineer from the Jet Propulsion Laboratory (JPL), provided a trajectory that could not only get a craft into orbit but could do it at an estimated bargain-bucket cost of 280 million dollars, that the Messenger mission could really begin to take flight.

Taking off from Cape Canaveral on 3 August 2004, Messenger began a six-year, seven-month, 16-day journey to Mercury that would take it on a 7.9-billion-kilometre trajectory before it entered into orbit around the smallest of all the planets. To arrive at Mercury with the right speed and on the right course would require a complex route that would entail a number of gravity-assist manoeuvres around the Earth, Venus and Mercury itself to reduce the speed of the craft relative to Mercury. So, combined with the brief firing of its large rocket engine to finally insert it into orbit, this mission profile allowed Messenger to complete its voyage without the need to carry the vast reserves of fuel required to slow its passage through the firing of rockets. This design made the craft lighter and cheaper, but ultimately much slower. Almost seven years was a long time to wait for the team patiently charting its progress across the stars. Larry Nittler described Messenger’s course as ‘sneaking up on [Mercury] by taking a seven-year journey, flying around the Sun many times, doing multiple flybys around Mercury and Venus, and each time transferring some of [the] craft’s speed and energy to the planet, so it could slow down, so that when we finally got to Mercury after seven years, we were able to fire our engine just a little bit, to slow down [even more] and get captured by the weak gravitational field of the planet’.


© HarperCollins

The highly elliptical path taken by Messenger to finally enter Mercury’s orbit at 00.45 UTC on 18 March 2011.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Messenger’s mission was a deeper exploration of the cratered landscape and geology of Mercury. One major discovery from its imaging work was evidence of water ice in its polar craters.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Messenger took images of Mercury’s south pole on several orbits, allowing scientists to monitor the region through changing illumination.

Appropriately, when Messenger finally entered into Mercury’s orbit at 00.45 UTC on 18 March 2011, the path it settled into was highly elliptical. This orbit took it on a 12-hourly cycle from 200 kilometres above the planet’s surface to 10,000 kilometres away from it. It may seem like an odd orbit for a craft with the singular aim of getting as close to Mercury as possible, but this was an essential part of the design of the mission, vital to protect Messenger from the fierce heat radiated by the scorching hot surface of Mercury. The sunlight reflected from the surface is so powerful it would have literally melted the solder holding the spacecraft together if it wasn’t given time to cool down between its closest approaches to the planet.

Protected by an enormous ceramic solar shield and its eccentric orbit, Messenger could begin its work. For two years the spacecraft mapped pretty much every bit of the surface of Mercury, and the images beamed back to Earth revealed a planet that’s been in the firing line for billions of years. Too small to hold on to an atmosphere that might protect it from meteorites, and lacking any processes to recycle old terrain, Mercury’s ancient surface is the most cratered place in the Solar System.


© NASA/JPL

This computer photomosaic of Mercury’s southern hemisphere was created from images taken by Mariner 10 on its flyby of Mercury, giving scientists a tantalising glimpse of this elusive planet.

Cosmochemist Larry Nittler explains the reason behind Messenger’s elliptical orbit

‘The way we addressed the problem of heat from the planet was to be in an extremely elliptical orbit, where we flew in very close over the North Pole, and took observations close to there, but then flew very far over the South Pole, like 10,000 kilometres. And so a couple of times a day we’d zoom in over the North Pole, get our data close, but the instruments would heat up, so then we’d fly and get different data farther out from the planet while we cooled, and in this way – heat up, cool down – we kept everything below the danger temperatures where instruments could be damaged.’

MAPPING MERCURY

The Mariner 10 mission had enabled scientists to see about half of the planet, so the first full view of the terrain of Mercury came from the flybys of Messenger. As planetary scientist Nancy Chabot explains, ‘Before Messenger, we had only seen 45 per cent of the planet and we saw some stuff during the flybys before we went into orbit, but after orbiting the planet we have now mapped 100 per cent of the planet and seen nearly everywhere. There are some permanently shadowed regions which are still mysterious … but after mapping the full planet, we have a good idea of what the surface looks like and craters are absolutely a dominant land form. This planet has been sitting there for billions of years and been hit over and over, and it hasn’t had a lot of processes to destroy those craters.’

‘Scars are just another kind of memory.’

M.L. Stedman

Amongst the thousands upon thousands of craters on Mercury, the largest by far is Caloris Planitia, a lowland basin 1,525 kilometres in diameter that is thought to have formed in the early years of the Solar System, around 3.9 billion years ago. It was first spotted as Mariner 10 sped past in 1974, but due to the trajectory and timing of the craft only half of it was lit, so the full character of this crater remained a mystery for another 30 years until Messenger could photograph it in all of its glory. Taking one of its very first photos, Messenger revealed Caloris to be bigger than had been previously estimated, encircled by a range of mountains rising 2 kilometres from the Mercurian surface, whose peaks create a 1,000-kilometre boundary around the lava plains within.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

This colour mosaic of Mercury’s Caloris basin was created using images taken by Messenger in 2014.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Messenger photographed Mercury’s geology in great detail, capturing this crater within the vast Caloris basin.

On the other side of the mountains, the vast amount of material that was lifted from the planet’s surface at the moment of impact formed a series of concentric rings around the basin, stretching over 1,000 kilometres from its edge. The collision that created Caloris hit Mercury with such force that it also had more global consequences. Messenger photographed in great detail an area named (in the not particularly scientific vernacular) ‘the weird terrain’, a region at the planet’s diametrically opposite point, the antipode, to Caloris. This area of strange geological formations distinct from the rest of the surrounding terrain was likely created by the seismic shockwave of the Caloris impact reverberating through the whole of the planet.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

In this 3D view of Mercury’s north polar region, the areas marked in yellow show evidence of water ice.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

The Mercury Atmosphere and Surface Composition Spectrometer (MASCS) instrument and the Mercury Dual Imaging System (MDIS) aboard Messenger enabled scientists to create these images, which use colours to map out the mineral, chemical and physical makeup of Mercury.


© NASA/Goddard Space Flight Center Science Visualization Studio/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Radio tracking data sent by Messenger has enabled scientists to create maps of the gravity field of Mercury. In this image, Mercury’s gravity anomalies are depicted in colours: red indicates mass concentrations around the Caloris basin (centre) and the Sobkou region (right).

‘We couldn’t quite believe it, in fact we thought the data was wrong … we spent over two months looking at and double-checking the information but it was correct, Messenger had found a high level of volatiles such as sulphur, sodium and potassium on the surface.’

Nancy Chabot, planetary scientist, Messenger mission

Right up until the end of its mission in 2015, Messenger continued to uncover many of Mercury’s secrets, including a few very particular surprises. Using a combination of photography, spectroscopy and laser topography, Messenger revealed tantalising evidence that even this close to the Sun, water ice can exist on the surface of a planet. Even though the Sun blasts much of Mercury’s surface, the tilt of its rotational axis is almost zero, so there are craters and features around the planet’s poles that never see direct sunlight. Combined with the lack of atmosphere, these regions are forever exposed to the freezing temperatures of space, and it’s in this environment that Messenger was able to record the clear signature of water ice. Here, in the eternal night of a polar crater, it’s cold enough for ice to survive for millions of years, just metres away from the savage ferocity of the Sun’s light.

However, Messenger’s most startling discovery was still to come. The mission objectives had been developed to explore the deep history of Mercury and provide data to test against our theories of the formation and early life of the planet. Messenger was equipped with a collection of spectrometers designed to analyse the composition of Mercury at different depths. The Messenger team had worked on a detailed set of predictions outlining the chemistry of the planet, but as the spacecraft began to sniff at the Mercurian surface it soon became clear that our assumptions had not been quite right.

As the gamma-ray and X-ray spectrometers analysed the elements on Mercury’s surface they began to measure the unexpected characteristic signature of a number of elements such as phosphorus, potassium and sulphur at much higher levels than they were expecting. Up to this point, the working hypothesis had been that during the formation of Mercury (and all the rocky planets), as the rock condensed and combined to form the planet, the heavier elements like iron would sink towards the centre, forming the bulk of the core, while the lighter elements, such as phosphorus and sulphur, would remain near the surface. These more volatile elements would then be expected to be stripped away from the surface, particularly on a planet like Mercury, which is so close to the Sun. And yet the Messenger data confirmed high levels of potassium, and sulphur was detected at ten times the abundance of the element on Earth or the Moon. Both are volatile elements, easily vaporised, and when this close to the Sun, they simply should not have survived the planet’s birth.

On top of that, the Messenger data confirmed what we had long suspected about the structure of Mercury, that it is the densest of all the planets, with a massive iron core making up 75 per cent of the planet’s radius compared to just over 50 per cent here on Earth. The core creates a strange lopsided magnetic field, indicating that the internal dynamics of the planet are different to anything we have seen before.

All of this adds up to making Mercury something of a mystery, as nothing quite accords. The eccentric orbit, the abundance of volatile elements on the surface and the oversized iron core all point to the planet having a history far more complex than was first imagined, and the best explanation we have to make sense of the Messenger data is that Mercury was not born in its current sun-scorched position. It has long been supposedly known that the orbits of the planets are eternal, stable loops that sustain the structure of the Solar System in an endless rhythm, but everything we are learning now suggests that this is far from the whole story.

MEASURING MERCURY

Messenger was equipped with seven scientific instruments to collect data, including the Mercury Dual Imaging System (MDIS), Gamma-Ray and Neutron Spectrometer (GRNS), X-Ray Spectrometer (XRS), Magnetometer (MAG), Mercury Laser Altimeter (MLA), Mercury Atmospheric and Surface Composition Spectrometer (MASCS) and Energetic Particle and Plasma Spectrometer (EPPS). All these instruments communicated with the spacecraft through Data Processing Units (DPUs) and had to be mounted on the spacecraft with a view of Mercury but without interference from the Sun. They were designed to withstand the extreme temperatures the craft would encounter.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Topography

Messenger’s MLA equipment was able to measure the difference in elevation across the northern hemisphere of Mercury, revealing it to be 10 kilometres between the lowest and highest regions.

Temperature

Messenger recorded expected information about the temperature of the planet, that the craters which were sunlit reached high temperatures, reflected in the red colouration of these images.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Geology

In this enhanced colour mosaic, the smooth volcanic plains of the Caloris basin are coloured yellow, with the craters picked out in blue.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington


© WALTER PACHOLKA, ASTROPICS / SCIENCE PHOTO LIBRARY

As predictable as the sunrise, Mercury keeps its place in our solar system, visible in the glow of dawn over Haleakala National Park, Hawaii.

A SECRET HISTORY

Mercury, like all four of the rocky siblings, was formed of molten rock. A few million years later, as the young planet began to cool, its crust solidified and its journey around the Sun transformed from being part of a swirling cloud into a clearly defined passage, an orbit. The path the infant Mercury travelled, however, was most probably far removed from the course it now holds. The young Mercury was born not as the closest planet to the Sun but at a much greater distance, far beyond the orbit of Venus, beyond Earth, perhaps even beyond Mars. This was a planet that came into being in the mildest region of the Solar System. It was far enough away from the Sun to allow volatile elements like sulphur, potassium and phosphorus to be folded into its first rocks without being vaporised away by the heat of the Sun, but maybe near enough for its surface to be warmed, perhaps even just the right amount for liquid water to settle on its surface. This may well have been a planet big enough to hold an atmosphere, a watery world upon which all the ingredients of life could well have existed. Mercury, it seems, really did have its own moment in the sun, but these hopeful beginnings were not to last.

Today it’s hard to imagine the planets in any orbit other than our night sky. They feel eternal, permanent, and so it’s natural to think of the Solar System as a piece of celestial clockwork, a mechanism running with perpetual and unchanging precision, marking out the passage of time. In time frames that we can comprehend – days, weeks, months and years – the motion and trajectory of the planets is just that: clockwork. We use these markers to plot out the 24 hours of a day, 365 days of a year, and the lunar cycle is, of course, intimately linked to our months. Beyond that, Newton’s laws of universal gravitation first described in 1687 allow us to this day to plot out the trajectories of all the heavenly bodies far into the future and back into the distant past. This predictability of motion is what allows us to plot great astronomical events, such as eclipses and transits, far into the future. It’s why, for example, we can predict that on 14 September 2099 the Sun, Moon and Earth will be in precise alignment to create the final total solar eclipse of the twenty-first century across North America.


© SCOTT CAMAZINE / SCIENCE PHOTO LIBRARY

Chaos theory is used to predict the development of large-scale events from a given starting point, as shown in this Henon mapping of a chaotic system.

But 100 years ahead or behind us is nothing more than a proverbial blink in terms of the life of the Solar System, and over longer durations the clockwork becomes a lot less reliable. If there was only one planet orbiting one star – for example, if Mercury was the orphan child of the Solar System – we would be able to calculate precisely the gravitational force between Mercury and the Sun, and to plot Mercury’s orbit around the Sun with essentially infinite precision. But add one more planet into our rather vacant imaginary solar system – let’s say we make it Jupiter – so there is now a gravitational force between all three objects – the Sun, Mercury and Jupiter – and it’s no longer possible to calculate exactly where they’re all going to be in the future or where they were at some point in the past.

‘One possible theory is that Mercury didn’t form where it is today, but much closer to the other planets, maybe even outside of Venus, or Earth, or somewhere in between. Then because of interactions with Jupiter, Earth, Venus, and so on, it got put into a chaotic path that pushed it farther into the Sun.’

Larry Nittler, cosmochemist, Messenger mission


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

The incredible shrinking planet

The surface of Mercury is made up of just one continental plate covering the entire planet. Over the billions of years since its formation at the birth of the Solar System, the planet has slowly cooled, a process all planets undergo if they lack an internal source of heat renewal. As the liquid iron core solidifies, it cools, and the overall volume of Mercury shrinks.

When NASA’s Mariner 10 mission circled the planet in the 1970s, it captured images of surface features created by the shrinkage. The contracting planet pushed the crust up and over itself, forming scarps that can extend miles below the planet’s surface. At the same time, the shrinking surface caused the crust to wrinkle up on itself, forming so-called ‘wrinkle ridges’.

The scarps and wrinkle ridges identified by Mariner 10 allowed scientists to estimate that the planet had lost approximately 1 to 2 kilometres in global radius, a finding that contrasted with their understanding of the heat loss the planet suffered over time.


© MARK GARLICK / SCIENCE PHOTO LIBRARY

When there are more than two objects in play at any one time you have what physicists call a chaotic system. It means the planets can push and pull one another, moving entire orbits in ways we simply cannot predict. So the further we look back in time, the less certain we are of the position of any of the planets. Our mathematics fails, so instead we have to rely on circumstantial evidence to piece together a picture of the past. In the case of Mercury, it’s the evidence from Messenger detailing the levels of volatile elements like potassium and sulphur that enable us to begin to understand the early life of the planet and infer that Mercury must have begun life further out in the Solar System than it finds itself today. So what happened next? How did a planet that began its life in the sweet spot of the Solar System end up in the scorched interior?

The answer lies in the other clue Messenger confirmed for us – Mercury’s massive iron core. Relative to its size, Mercury has the most massive core of any of the rocky planets: 75 per cent of its diameter and almost half of its mass is molten iron, compared to around just a fifth of the mass of the Earth. We’ve suspected the oddity of Mercury’s composition for well over 150 years, and that’s because of some brilliant deduction by a German astronomer called Johann Franz Encke, who determined the mass of Mercury by measuring the gravitational effect it had on a passing comet, a comet that we now call, unsurprisingly, Comet Encke. With an approximation of the planet’s mass we are able to calculate the density of the planet, and with that calculation approximate its composition.

So we’ve known for some time that Mercury is odd, but only with the arrival of Messenger did we begin to reveal just how odd the smallest planet actually is. By accurately measuring Mercury’s magnetic field we’ve been able to confirm that far from being a geologically dead planet, Mercury has a dynamic magnetic field driven by an internal force, indicating that the core is at least partially liquid. This goes against the conventional thinking of planetary dynamics because we would expect a planet as small as Mercury to have lost its internal heat long ago. Just as Mars lost its heat because of its size (a story we will come to in the next chapter), we would have expected the core of Mercury to have cooled and solidified.

But Messenger’s data proved otherwise. By combining precise measurements of Mercury’s gravity field with the extraordinary mapping of its surface, Messenger found that Mercury’s structure is unique in the Solar System. It appears to have a solid silicate crust and mantle above a solid layer of iron sulphide, which surrounds a deeper liquid core layer, possibly with a solid inner core at the centre of the planet. This challenges all the theories about its formation.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Messenger captured this image of Apollodorus crater, near the Caloris basin; the radiating troughs led scientists to give it the nickname ‘the spider’.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

On 30 April 2015, NASA added its own crater to this region of Mercury. At 3.26pm EDT, Messenger impacted the planet’s surface, bringing the spacecraft’s mission to a dramatic end, but leaving its mark forever with a crater estimated to be over 15 metres wide.


© redrawn from NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Four and a half billion years ago, we know that the inner Solar System was in turmoil. In the middle of it all, we think that the newly born Mercury found itself orbiting far out from today’s intimate proximity with the Sun, surrounded by rocky debris and scores of planetary embryos all jockeying for position. The young Solar System was still a place where planets could live or die. But it wasn’t just the rocky planets that found themselves disturbed; Jupiter, the largest and oldest of all the planets, was on the move, and when a planet of that size shifts its position there are almost always casualties. We’ll come back to the story of Jupiter’s grand tack and the havoc it spread throughout the Solar System in Chapter 3, but for now all we need to know is that the evidence suggests that the juvenile Mercury was kicked by the gravitational force of Jupiter on an inward trajectory, finding itself flung in towards the Sun and into the path of danger. In the crowded orbits of the early Solar System such a change of course was fraught with danger, and all of the evidence indicated that this was the most violent and defining of turns in Mercury’s history. As the planet swerved inwards it collided with another embryonic world and shattered.

Today we see the evidence of this ferocious collision in the strange structure of this tiny planet. A giant core has been left behind, the exposed interior of a planet that had much of its outer layer, its crust mantle, stripped away and lost to space in the aftermath of the collision. This collision not only transformed the physical characteristics of the planet but also knocked Mercury further inwards on a lopsided trajectory that we see reflected in the most elliptical orbit of all the planets. Although we cannot be certain of these events, it’s a brilliant piece of scientific deduction to use the evidence we have to create a plausible scenario of events that happened unimaginably long ago. Events that drove the first rock from the Sun from a position full of potential to a place much too close to the Sun to support any form of life; an opportunity lost. After four years of observation and its investigation of Mercury’s ancient past, Messenger finally ran out of fuel on 30 April 2015, and added yet another crater to this tortured world that once held such promise.


© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

In 1990, Voyager 1 captured a series of images from which we could create a portrait of the Solar System, giving a clear location for Mercury and its distance from Earth.


© US GEOLOGICAL SURVEY / SCIENCE PHOTO LIBRARY

Mariner 10 took the first close-up images of Mercury.


© NASA / SCIENCE PHOTO LIBRARY

Venus in the 1970s, which allowed scientists to compare the planets’ atmospheres.

PLANET OF MYSTERY

Shrouded in an unbroken blanket of cloud, the next rock from the Sun tells a very different story. Over 50 million kilometres beyond Mercury lies a world that at first sight has the potential to be far more Earth-like than her scorched inner companion.

Venus is perhaps the most mysterious of all the planets, lying on the inner edge of the so-called ‘habitable zone’; this is a planet that holds its secrets close. For centuries it has teased us with its brightness in the early morning and early evening sky. It’s so bright because it’s a large planet about the same size as the Earth, it’s not too far away from us either, and the clouds that shroud it are highly reflective, reflecting three-quarters of the light that hits them. That’s the frustrating but tantalising thing about Venus, because even when you look at it through a big telescope, it is featureless; you never see the surface, which means that until the 1950s scientists could only speculate about what lay beneath.

In the late nineteenth and early twentieth centuries many thought that beneath her clouds Venus was hiding a mirror world to Earth; if not home to complex, sentient life, then certainly hosting basic life forms. Faced with that impenetrable cloak, our collective imaginations fuelled the idea of a living, breathing world beneath the clouds, a shroud that meant for the first half of the twentieth century we lived convinced that we were far from alone in the Solar System.

‘I can find no reason … for denying that she may be considered the abode of creatures as far advanced in the scale of creation as any which exist upon the Earth.’

Richard Proctor, English astronomer, 1870


© NASA/ARC

A hazy and cloud-shrouded Venus, photographed by Pioneer Venus Orbiter.

Nobel Prize-winning chemist Svante Arrhenius was one of the most renowned scientists to fuel the mythology of what lurked behind Venus’s cover. Like many of the scientists of his era, Arrhenius let his curiosity wander into many different realms, including astronomy, and he hypothesised at length about the Venusian environment. Assuming the clouds of Venus were composed of water, he wrote in his book The Destinies of the Stars that ‘a very great part of the surface of Venus is no doubt covered with swamps’, creating an environment not unlike the tropical rainforests found here on Earth.


© MARK GARLICK / SCIENCE PHOTO LIBRARY

Artwork showing the successful landing of the Venera 9 spacecraft, which in its 53 minutes on the surface of Venus returned the first ever images of the planet.


© Science History Images / Alamy Stock Photo

Svante Arrhenius, Nobel Prize-winning chemist

‘Everything on Venus is dripping wet … A very great part of the surface … is no doubt covered with swamps corresponding to those on the Earth in which the coal deposits were formed … The constantly uniform climatic conditions which exist everywhere result in an entire absence of adaptation to changing exterior conditions. Only low forms of life are therefore represented, mostly no doubt belonging to the vegetable kingdom; and the organisms are nearly of the same kind all over the planet.’

Expanding on this picture, he suggested that the complete cloud cover of the planet created a uniformity totally unlike the extremes of weather that define different parts of the Earth. In Arrhenius’s imagination this stable environment, with a consistently uniform climate all over the planet, meant that any life on Venus lived without the evolutionary pressures of changing environments that drive natural selection here on Earth, leaving Venus in an evolutionary limbo akin to the Carboniferous Period. Describing a world full of prehistoric swamps and dank forests, Arrhenius created the perfect canvas for science-fiction writers of the time to conjure up a menagerie of curious life forms lurking beneath the clouds.

Today Arrhenius is far less known for his fertile imaginings on the wildlife of Venus than he is for his work on the climate of Earth. In 1896 he was the first scientist to use basic principles of chemistry to demonstrate the impact that the atmosphere can have, in particular levels of carbon dioxide, on the surface temperature, a process that was called the Arrhenius effect but is now known as the greenhouse effect. An effect that would not only have profound consequences for our understanding of our impact on our own planet, but would also be vital in explaining the true nature of Venus beneath the clouds.

By the 1920s, as ground-based technology improved, we stopped painting the surface of Venus with our imaginations and started filling in the gaps with facts. The first spectroscopic analysis of the planet’s atmosphere suggested that it wasn’t water or oxygen that filled the clouds of Venus, so some thought this hinted at an arid, desert land beneath. Others speculated that formaldehyde filled the air, leading to the belief that Venus was not only a dead planet but a pickled one, too. But come the 1950s the true nature of Venus began to be revealed, as more accurate Earth-based observation suggested the presence of overwhelming levels of one defining gas in the Venusian atmosphere. This was not a planet shrouded in clouds of water and oxygen, nor pickled in formaldehyde, this was a planet engulfed in a blanket of carbon dioxide, and as Arrhenius had demonstrated on Earth, this almost certainly meant that whatever lay beneath the clouds, the heat would be beyond the limits of even the most resilient life forms on Earth. As the first spacecraft were being built to explore our sister world, it was becoming increasingly clear that visiting Venus would be far from easy and she would be far from welcoming.

In the early 1960s, the Soviet Union began a series of missions under the programme name Venera, which attempted to explore the atmosphere and surface of Venus directly for the first time. The initial launches of the Venera programme failed before they had even left Earth’s orbit, but within a couple of years the programme began to slowly see some success.

Venera 1 was successfully launched on 12 February 1961. Designed as a flyby mission, it is thought to have passed within 100,000 kilometres of Venus, but a total telemetry failure on the craft meant that no data was returned to Earth. As far as we know, Venera 1 is still in an orbit around the Sun to this day.

Venera 3 attempted to go a step further and was designed to enter the Venusian atmosphere to take the first direct measurements. However, on crossing the atmospheric boundary the probe’s systems failed and no data was returned as it plummeted towards the ground. All that was left for Venera 3 was the historic position as the first human-built object to crash into another planet’s surface.


© Shutterstock


© SPUTNIK / SCIENCE PHOTO LIBRARY

In March 1982, Venera 13 returned these photographs of the surface of Venus, with part of the spacecraft visible in the foreground.

Despite multiple failures, the Soviets didn’t give up and in October 1967 Venera 4 entered the atmosphere of Venus and sent back data supporting the Earth-based observations, revealing for the first time that the blanket of cloud surrounding Venus was made up of primarily carbon dioxide (90 to 95 per cent), 3 per cent nitrogen and just trace amounts of oxygen and water vapour. Venera 4 confirmed beyond all doubt that this was no second Earth: as it descended through the thick clouds, the temperature rose to 262 degrees Celsius, the atmospheric pressure increased to 22 standard atmospheres (2,200kpa) – and this was still 26 kilometres above the surface. As Venera 4 parachuted its way down to the surface it provided data back to Earth while confirming its own imminent death. This was a spacecraft that was not designed to survive the intense pressures and temperatures it was measuring, let alone the lack of the water landing it was designed for. The craft failed during the descent and was lost long before it reached the surface.

Gradually, through the following missions, the Soviet scientists began to overcome each and every challenge Venus put in front of them. Venera 7 was built to survive the most violent of landings, and even though its parachute failed, it made it to the surface intact in 1970 and was able to use its damaged antennae to transmit limited temperature data for 23 minutes before it expired.

Venera 9 not only made it to the surface and operated for 53 minutes in October 1975 but was also the first craft to successfully deploy its camera on the ground and transmit an image back to Earth. In the first-ever picture taken from the surface of another planet, the black and white fractured image revealed a rocky, desolate landscape with measurements confirming it to be a blistering 485 degrees Celsius, with an atmospheric pressure of 90 atm (standard atmosphere) crushing down.

By the time Venera 13 launched, on 30 October 1981, the ambition of the missions and the confidence in delivering data from the surface had been radically transformed. Venera 13 functioned for 127 minutes in recorded temperatures of 457 degrees Celsius and a pressure of 89 Earth atmospheres. The probe’s cameras deployed, taking the first colour image from the surface of Venus, spring-loaded arms measured the compressibility of the soil, while a mechanical drill arm took a sample of the Venusian surface that was analysed by an onboard spectrometer. If that wasn’t enough, onboard microphones were deployed to record the vicious winds that were assumed to be whipping the surface of Venus, the first-ever recording of the sound of another planet.

As the Venera missions came to a close in 1983, not even the smallest doubt remained of Venus’s hostility. Far from the benign water world we had once imagined, the reality was that this was not a sister we recognised – in our search of the heavens for a place like home we’d found a toxic, fiery hellscape.

Venus is an enigmatic world – almost Earth-like in size, position and potential, and yet as far from paradise as it’s possible to imagine. If Mercury’s story is one of catastrophic orbital change and Earth’s of balance and stability, the story of Venus is a tragedy; a tale of subtle, yet relentless decline. So why did it all go wrong for Venus? Why did a world born with such similarities to the Earth take such a different path? To answer that, we need to look beyond the tortured planet we see today and go back to a time when Venus was a young thriving planet.


© SPUTNIK / SCIENCE PHOTO LIBRARY

Soviet scientists worked hard on the Venera missions, tweaking the spacecraft at every new incarnation, to get more time to explore Venus’s hostile landscape. This is a model of the Venera 9 spacecraft.

Through the following missions, the Soviet scientists began to overcome each and every challenge Venus put in front of them.


© Sovfoto/UIG via Getty Images

A diagram of Venera 1, the first mission.


© SPUTNIK / SCIENCE PHOTO LIBRARY

The Venera 1 display in the space (Kosmos) pavilion at the All-Russia Exhibition Centre, in Moscow, Russia.


© SPUTNIK / SCIENCE PHOTO LIBRARY

This radar image taken by Venera 15 and 16, offers a fascinating insight into the terrain of Venus, revealing the Maxwell Montes mountain range in the centre and the 100-km-wide Cleopatra crater.


© SPUTNIK / SCIENCE PHOTO LIBRARY

Sediment and rocks visible on the landscape, imaged by Venera 9.

THE BIRTH OF VENUS


© NASA/JPL

Rising centrally in this computer-generated image is the volcano Maat Mons, surrounded by cascading lava. This three-dimensional image was created using data relayed by Venera 13 and 14.

‘Today Venus is incredibly hostile … so hot, so dry, but what did it start out like, was it ever more Earth-like? We don’t know for sure, so we want to make future spacecraft missions to nail down that early history.’

David Grinspoon, astrobiologist

Four billion years ago, Venus was a familiar world. A world created from the same dust as the Earth, born just about the same size and settled into an orbit that seemed just far enough away from the glare of the Sun to allow a precious process to begin to take hold. In almost every conceivable way, Venus’s early life mirrored that of our own world. As its newly formed crust settled and cooled from the violent heat of its birth, an atmosphere began to grow around the young planet, fed by gases bubbling up from the molten rock below its surface, as well as captured from the clouds of gas and dust it swept through on its orbit around the Sun. Clinging to the young Venus, this thin layer of gas would have certainly contained nitrogen, oxygen and carbon dioxide, but most intriguing of all, we are certain it would have also contained large amounts of water vapour.

High in the Venusian atmosphere this water vapour eventually cooled enough to change state from vapour to liquid. And with that transformation, a process began, that perhaps for the first time on any of the planets would have seen the conditions become just right for droplets of liquid water to take shape and begin falling from the Venusian sky. These were the first rains of the Solar System, showering down onto the dry plains of Venus. Gradually these rains would have not just fallen but flooded the surface, rivers would have flowed and shallow oceans taken hold of large swathes of the planet’s surface. Venus, perhaps before even the Earth, became a water world, a planet with skies full of clouds and a surface full of oceans, feeding the cycle of water around this young planet.

How can we be certain this blue version of Venus existed? Unlike Mars, where we can see the evidence of its watery past etched onto its surface, we have no such direct evidence of the presence of liquid water on the surface of Venus. The only physical evidence we have suggests that the planet’s watery past comes from measurements taken by NASA’s Pioneer Venus spacecraft back in 1978. One of its most surprising discoveries revealed an unexpected amount of deuterium (heavy water) in the atmosphere compared with hydrogen. This D/H ratio is far smaller on Venus than it is on Earth, and that’s interesting because when the two planets formed the ratio would have almost certainly been the same. Because hydrogen is far more easily lost from an atmosphere than deuterium, this smaller ratio suggests that Venus has lost a lot more water than the Earth over its lifetime – the signature of a long-lost primordial ocean. As cosmochemist Larry Nittler explains:

‘Scientists believe that Venus once had a lot of water in its oceans, but lost it over time, and perhaps in oceans as recently as a billion years ago. The reason we can tell this is from the isotopic composition of hydrogen measured in its atmosphere by spacecraft. Now, hydrogen has two flavours of isotopes, whereas most hydrogen atoms are just a single proton in the nucleus. Some, a small fraction, are what we call deuterium, that have a proton and a neutron, so they weigh twice as much as the regular hydrogen. What happens when you have evaporation of water from a planet, or the atmosphere, is that the water molecules that contain hydrogen are much lighter than the water molecules that contain deuterium, so they evaporate more easily, and can be lost more easily. So, over time, as you evaporate water, deuterium-bearing molecules stay behind relatively to the regular ones, and you build up a deuterium to hydrogen ratio. And by back-calculating from the measured ratio today, we can figure out how much water has been lost over the billions of years of evolution, and [on Venus] it’s quite a lot.’


© United States Naval Observatory

The transit of Venus – as the planet crosses the face of the Sun – was captured in photographic plates as early as 1882.

None of this is solid proof, but it does begin to point us in one direction, and with no further exploration of the surface we have had to rely on an accumulation of indirect evidence to begin to paint a more detailed picture of Venus’s watery past.

As with almost all of our understanding of the planets, the evidence that built this picture has been accumulated through decades of exploration. Starting with the Venera missions’ first touchdown on the planet to the Pioneer Venus orbiter, and to the more recent Magellan mission, which not only relayed extraordinary radar soundings of the surface of Venus but provided the first full topographical map of the planet collated over a period of four years in orbit.

Combining all of the data that has been accumulated over decades of exploration has allowed us to peer deep into the planet’s past, using the same tools that enable us to model the future of climate change here on Earth to create climate models of Venus in the past, present and future. The results of this analysis, conducted most recently by a team from NASA’s Goddard Institute for Space Studies (GISS), all point to the same conclusion – in the distant past Venus was a planet covered in shallow primordial oceans.

Some estimates suggest this water world was far from fleeting, a blue planet just like our own that could have been sustained for around 2 billion years and perhaps only disappeared some 700 million years ago. It’s a tantalising thought that such a similar world to our own existed for so long with liquid water on its surface. We know life took hold quickly on our own blue planet, within half a billion years of the Earth being formed, so there seems good reason to suspect that if Venus really was as wet as the models predict, it too could have sprung into life. Exactly what went on in the long-lost rivers and oceans of Venus is yet to be discovered; hidden behind the clouds, we have not yet been back to search for any signs that life ever took hold here. Our exploratory attentions have turned to Mars as a planet that not only has a fertile past but is also a possible target for human colonisation in the future. We know for certain that no life (at least no life we understand) could exist on Venus today, and perhaps even the evidence of any biology on that long-lost water world has long ago vanished under the oppressive heat, rampant volcanism and extreme pressures of the planet today. So where did all that water go? Understanding this requires an exploration of the differences between Earth and Venus, as well as the similarities.


© LIBRARY OF CONGRESS / SCIENCE PHOTO LIBRARY

Venus has fascinated scientists for centuries; this diagram was drawn by Nicholas Ypey in 1761, showing the transit of Venus that year.


© United States Naval Observatory

Catching a glimpse of the transit of Venus is rare and has been important throughout the centuries. The next such sightings are predicted for 2117 and 2125. Recording each transit is vital research, which helps scientists to determine the scale of the Solar System.

‘Oh most grateful spectacle, the realisation of so many ardent desires.’

Jeremiah Horrocks, seeing the transit of Venus in 1639

Today Venus has the slowest rotation of any planet in the Solar System, taking 243 Earth days to complete one rotation on its axis. This period is known as the sidereal day, which is different to a solar day – the time it takes for the Sun to return to the same point in the sky. On Earth the sidereal day, at 23 hours, 56 minutes and 4.1 seconds, is very close to the solar day, which lasts pretty much exactly 24 hours. But on Venus the difference between these two periods is much greater. Even though the planet takes 243 days to rotate on its axis when combined with its orbit, a solar day on Venus lasts for 116.75 Earth days. It means every day on Venus lasts almost four months on Earth, and not only that, but Venus also rotates from east to west (one of only two planets to do so, along with Uranus). So across this toxic world a sunrise would last literally for days as it inches across the sky.

This slow progression of the Sun in the Venusian sky, due to the planet’s creeping rotation, has raised many questions about how in the past the planet would have been heated and how the climate would have been affected by such a different rotation compared with the Earth’s. Today the climate of Venus is what is known as isothermal – there is a constant temperature between the day and night sides and between the equator and the poles. This is because the thick atmosphere literally acts like a blanket, dissipating the heat of the Sun so that the only real variation in temperature on the Venusian surface occurs due to differences in altitude. In its past, however, this may have been very different – with a more Earth-like atmosphere, so the Sun would have been beating down on the planet’s surface for days on end.


© NASA / GODDARD SPACE FLIGHT CENTER / SDO / SCIENCE PHOTO LIBRARY

Composite image showing the transit of Venus in June 2012 (in black spots).


© NASA/JPL/USGS

NASA’s Magellan mission in the 1990s sent back images of Venus that enabled scientists to create a more detailed image of the landscapes of this long-lost world. They revealed a terrain of lowlands and highlands, dotted with active volcanos – a far cry from the ancient watery Venus imagined and depicted in some artworks.


© NASA

‘In the GISS model’s simulation, Venus’s slow spin exposes its dayside to the Sun for almost two months at a time. This warms the surface and produces rain that creates a thick layer of clouds, which acts like an umbrella to shield the surface from much of the solar heating. The result is mean climate temperatures that are actually a few degrees cooler than Earth’s today.’

Anthony Del Genio, planetary scientist

To make things even more complex, we know the spin of a planet is intimately linked to its climate and we’ve got strong evidence to suggest that how fast a planet spins is directly related to its chance of habitability. Until very recently it was assumed that the slow rotation of Venus must have been caused by the presence of a thick atmosphere early on in its history that in effect acted as a brake on the planet’s spin. However, recent studies now suggest the planet could have had a thin atmosphere like that of modern Earth and still have ended up with its slow rotation.

Gradually, as we start to build a picture of ancient Venus we begin to see beyond the cloud cover of today through to an ancient planet with an Earth-like atmosphere, and a day lasting over 200 Earth days as the Sun beat down on the ocean-covered surface.

To make sense of the climate of this Earth-like Venus, the team at the Goddard Institute needed to make another tweak (or postulation, to be more precise) to the model. With the Sun hitting the one side of the surface for so much longer than on the Earth, the evaporation rate of the oceans would be far greater and potentially incompatible with the water world we suspect existed, but by simply adjusting the amount of dry land on the surface of Venus, especially in the Tropics, the effect is dramatic. With a higher percentage of land, the models suggest that even the slow rotation would not dry out the planet, and it could have held on to enough water to be ripe for supporting the emergence of life.

By combining all of this data, the GISS team have painted our most up-to-date picture of early Venus, and it’s a beguiling image. Within the infant Solar System, it is a planet the size of Earth with a similar atmosphere to the one we see today. On Venus days lasted for months as the Sun arced slowly across the sky from west to east, rising and setting over a vast, shallow ocean.

Finally, the data from radar measurements taken by NASA’s Magellan mission in the 1990s was used to paint the last brushstrokes of this long-lost world. Filling in the lowlands with water, the topography of this ancient world emerges with the highlands exposed as the Venusian continents. It all points to the possibility that Venus could have been the first habitable world in our Solar System. So what changed? To find out we need to look not just at the planet in isolation but also at the star around which it orbits.

GOODBYE TO LIFE

No planet lives out its life in isolation. Venus, like all the planets is part of a Solar System, a system that is driven more than anything else by the star at its centre. Today the Sun burns bright in our skies, bathing our planet in just enough starlight to keep the oceans from freezing, but not too much to boil them away. Earth lies in the sweet spot we call the Goldilocks zone, but as we have already seen in this chapter, nothing in the Solar System is forever and what we see today is not what we will see tomorrow nor what we would have seen yesterday.


© frans lemmens / Alamy Stock Photo

Capturing the Sun’s warmth is essential for life on a planet, but when too much heat is trapped it can have devastating consequences.


© NASA/JPL-Caltech, Illustrations by Jessie Kawata

David Grinspoon, astrobiologist, on Venusian life:

‘So when we say, as we often do, that Venus is completely uninhabitable, we should put a little asterisk next to that statement, because, we’re talking about the surface environment. But actually if you go up from the surface about 50 kilometres you reach a zone that may be habitable on Venus; in the clouds the pressure and temperature is roughly what it is here on the surface of Earth. There are energy sources in terms of radiation and chemical energy, there are nutrients, there is even liquid water medium – although it’s concentrated sulphuric acid in the clouds – but we now know of organisms on Earth that love concentrated sulphuric acid. So there’s nothing to rule out life in the clouds of Venus and there are even some, I would say circumstantial, facts that suggest the possibility of a biosphere there. I wouldn’t bet on life in the clouds of Venus, but I wouldn’t rule it out until we’ve explored a little more carefully.’

As our Sun gets older, it’s gradually burning hotter and hotter. This is because as it ages the process of nuclear fusion – the fusion of hydrogen into (mainly) helium – gradually leads to an increase in the amount of helium in its core. This rise in helium causes the Sun’s core to contract, which in turn allows the whole star to shrink in on itself, creating an increased pressure that results in a rise in the rate of fusion, and so the energy output of the Sun goes up. If tomorrow the Sun is burning hotter than today, it of course makes sense that in the early days of the Solar System our Sun burned far less brightly. It’s a life cycle that is common to all main-sequence stars, the category of star that includes our Sun, and as the most common type of star in the Universe we have been able to study this life cycle in intimate detail, allowing us to make immensely detailed predictions about the characteristics of our Sun in the past and in the future.

Winding back the clock, the current consensus amongst astronomers is that 4 billion years ago the faint young Sun was at least 30 per cent dimmer than it is today. This cooler Sun would have undoubtedly had a big impact on all of the terrestrial planets. Earth would have been much colder, and as it was receiving far less solar energy it remains something of a mystery as to why our planet wasn’t frozen solid. Instead, at this time on Earth first life was just beginning, in the liquid water that we are pretty certain covered its surface.

At the same time, 3.5 to 4 billion years ago, the young Sun would have bathed Venus in a warmer glow. This ocean world found itself in its very own sweet spot, a world held in a delicate balance. With the Sun weakened and restrained, the Earth-like atmosphere of Venus could act as a gentle blanket, keeping the surface temperate and covered in an abundance of liquid water. But even with this additional solar energy we think Venus would have been cooler than the Earth is today; in fact we believe temperatures at that time would have been like a pleasant spring day here on Earth.

It wasn’t to last. Slowly the young Sun grew brighter, its increased energy output causing temperatures to gradually rise, which in turn began to lift more and more water vapour into the air, thickening the atmosphere and sealing the planet’s fate. Although the oceans of Venus may have persisted for billions of years, as the surface warmed and the atmosphere thickened, the destiny of this planet was already set, driven by an unstoppable process we have recently become very familiar with here on Earth.

The greenhouse effect is a process that has the power both to protect and to destroy a planet, but despite this power it actually boils down to some pretty simple physics. It’s all about how sunlight – solar radiation – interacts with the constituent parts of an atmosphere. In the case of the Earth, as solar radiation hits our atmosphere some of it is reflected straight back out into space, some is absorbed by the atmosphere and clouds, but most of the sunlight (about 48 per cent) passes straight through the atmosphere and is absorbed by the Earth’s surface, where it is heated up. The reason so much solar radiation makes it to the surface is because the gases in our atmosphere, like water vapour and carbon dioxide, are transparent to light in the visible spectrum. When you think about it, that’s pretty obvious because there’s a source of visible light in the sky, the Sun, and we can all see it! But it’s a different story when that sunlight heats the surface of the Earth and re-radiates back out not as visible light but as the longer-wave infrared light – thermal radiation.


© HarperCollins

‘Venus hasn’t stopped heating up, and we believe that as the Sun continues to age, billions of years into the future, it’s going to continue getting hotter. Eventually that means that Earth will go the way of Venus.’

David Grinspoon, astrobiologist

We can’t see this light, but as it radiates back out from the Earth’s surface, carbon dioxide and water vapour absorb the infrared, trapping that energy, and so the planet maintains a higher temperature that is intimately linked to the constituent parts of the atmosphere. The higher its level of gases like water vapour, carbon dioxide, methane and ozone, the greater the greenhouse effect and the bigger the uplift in temperature. Despite the very real threat that this now poses to the future of our planet, the greenhouse effect on its own is not necessarily a bad thing – the Earth would be at an average temperature of around minus 18 degrees Celsius without it – but as we are currently witnessing here on Earth, shift the balance of those gases and things can change very quickly.

At some point in Venus’s past, the levels of water vapour lifted into the atmosphere by the warming sun pushed the greenhouse effect to become more intense. With less and less of the Sun’s energy escaping, the ambient temperatures began to rise exponentially until the day came when the last raindrops fell onto the surface of the planet, the heat evaporating the rains long before they could reach the ground. Venus had reached a tipping point: with the increasing temperatures feeding more and more water vapour into the atmosphere, a runaway greenhouse effect took hold, driving away the oceans. This led to the surface of the planet getting so hot that carbon trapped in rocks was released into the atmosphere, mixing with oxygen to form increasing amounts of another greenhouse gas – carbon dioxide. With no water left on the surface and no other means to remove it, carbon dioxide built up in the atmosphere, setting the planet on a course that would result in the scorched body that we see today.


© NASA


© NASA

In 1977, in the days before computer-generated imaging, NASA commissioned artist Rick Guidice to paint illustrations of the surface of Venus, based on images received from Pioneer probes.

And so Venus’s moment in the Sun came to an end. Earthlings take note: when it comes to the greenhouse effect, there is a precariously thin line between keeping a planet warm and frying it.

THE END OF EARTH?

Of the four rocky worlds, only one has managed to navigate through the instability and constant change of our Solar System over the last 4 billion years and maintain the characteristics needed to support life. Mercury lost its fight early as it was flung inwards towards the Sun, Venus flourished at first, before slowly coming to the boil, and Mars, the runt of the litter, became a frozen wasteland long ago. Only Earth, uniquely amongst the planets, has persisted with an adequate stability over the last 4 billion years to allow liquid water to remain on its surface and an atmosphere just thick enough to keep its climate calm – not too hot and not too cold. Events have rocked us and extremes of temperature have waxed and waned, but never outside of the parameters needed to harbour life. In a chaotic solar system, filled with planetary might-have-beens, Earth is a shining example of stability, and the evidence for this is to be found in every nook and cranny of the planet.

Today Earth is dominated by life; the land and seas are teeming with millions upon millions of species, with thousands of new life forms discovered each year. Somehow, even when disaster threatened, the Earth has remained a living world; while endless species have come and gone, life has always persisted. It’s woven into the fabric of the planet – an integral part of every continent and every ocean. Life plays a crucial role in maintaining the balance of the atmosphere that keeps our planet temperate, but we know for certain it cannot last.

In a chaotic solar system, filled with planetary might-have-beens, Earth is a shining example of stability.

The Kamchatka Peninsula in Eastern Siberia is one of the most inhospitable places on Earth. A volcanic wasteland, peppered with thousands of hot springs, it’s here that we find some of the toughest living things. Extremophiles survive here that are able to withstand temperatures and pH levels higher than any other land-based life forms we have ever discovered. Kamchatka is part of the Pacific ring of fire, and despite its remoteness, biologists have long been enticed here to explore its toxic, bubbling cauldrons for signs of life. Complex life, animals and plants struggle to survive in temperatures above 50 degrees Celsius, so searching for life here is all about searching for single-celled life forms, bacteria and archaea – ancient microorganisms – that are somehow able to endure in this hostile environment. Life forms like Acidilobus aceticus, an archaea that can be found in a hot spring where the water is so acidic it reaches a pH of 2, and where temperatures rise to 92 degrees Celsius. In other parts of the hydrothermal field, bacteria like Desulfurella acetivorans have been discovered, which happily live in pools that are touching 60 degrees Celsius, but it’s these that are the real hotheads. In one of the biggest and hottest pools investigated by scientists, a large number of microbes have been found living in temperatures approaching 97 degrees – making it one of, if not the hottest environment ever studied for signs of life on land.

But to find the greatest hotheads on Planet Earth you need to look not on land but deep beneath the sea. In the furthest depths of the Atlantic, around the black smoker hydrothermal vents blurting out of the ocean floor, we’ve found strains of archaea that can survive temperatures of 122 degrees Celsius, and perhaps even higher.

These rare life forms live at the very edges of biology. Unique adaptations to their cellular chemistry enable the proteins and nucleic acids that create the structure of the microorganism to function, while the membranes that are protecting the cells utilise different fatty acids and lipids to keep the cell stable at the higher temperatures.


© Igor Shpilenok / naturepl.com


© Igor Shpilenok / naturepl.com

Russia’s Kamchatka Peninsula is one of Earth’s most inhospitable areas; the volcanic landscape gives us an insight as to how planet Earth might appear when it becomes too hot for life.


© DSS2 / MAST / STScI / NASA

Arcturus, one of the brightest stars in the Northern Hemisphere, which in its early history would have had similar characteristics to Earth.

Perhaps there are even tougher life forms that we are yet to discover, but the thermophilic microorganisms that we have so far identified and investigated in places like Kamchatka all point to the fact that life has its limits. Evolution by natural selection can only adapt so much, and even though it’s impossible to imagine what life on Earth will look like in a few hundred million or even a few billion years’ time, we know that biology is constrained by thermodynamics, and so we can say with some certainty that there will come a time when the Earth is too hot for any living things to exist. Natural selection will eventually run out of options as the laws of physics outplay it, and all life will come to an end.


© NASA, ESA and G. Bacon (STScI)

The blue white-dwarf star Sirius B (pictured to the right of Sirius A) has burned out to a core the size of Earth, giving us an insight into the future of our planet.

When this will happen no one can be certain, but as the Sun ages and grows hotter, temperatures on Earth will rapidly rise. Today the average surface temperature on the planet is 14.9 degrees Celsius, but with just a 10 per cent rise in the Sun’s luminosity, the average temperature will rise to 47 degrees Celsius and climbing. The increased temperatures will raise great storms across the planet. The rains will remove carbon dioxide from the atmosphere and it will be locked away as newly formed sedimentary rock. Trees and plants will struggle as they are robbed of the gas that sustains them, until eventually photosynthesis will cease. The lungs of our planet will fail and the precious oxygen that green plants and algae produce will dwindle. With the primary food source gone, the food chain will collapse and the age of complex life on Earth will draw to a close.


© Science History Images / Alamy Stock Photo

The diamond-shaped constellation, Boötes, has been known to scientists for centuries, described by Ptolemy in the second century.

Astrobiologist David Grinspoon on Venus as a window on Earth’s future

‘Left to its own devices, Earth will go the way of Venus. Now, this is nothing to lose sleep over right now because we’re talking at least a billion years, probably more like a couple of billion years in the future. We have more immediate concerns, but as we do compare the planetology and look at the exoplanets around other stars and consider the variety of planets in the universe and consider not just the past, but the future of our climate in our solar system, it is something to think about, that the current state of Venus is probably some kind of a window into the distant future of Earth under the warming sun.’

Heat-loving extremophiles may flourish for millions of years more, but eventually nuclear physics will have its way and as average temperatures race above 100 degrees Celsius, the last pockets of life will be extinguished from the Earth.

We can say with confidence this is going to happen because we can plot the future of our Sun far more precisely than the future of the Earth. Our understanding of nuclear physics allows us to predict what happens inside the cores of stars and thus we can see the past, present and future of stars like ours written across the night sky.

The heavens are filled with shining examples of stars that give us a glimpse into the future of our Sun. Arcturus, for example, in the constellation Boötes, is one of the brightest stars in the Northern Hemisphere. It’s around the mass of the Sun, perhaps a little bit heavier, and so in the distant past would have had remarkably similar characteristics to our own star. Today, though, Arcturus is 6 to 8 billion years old, potentially 3 billion years older than the Sun, and as it is no longer a main-sequence star, it is now in the red giant phase. Its fuel exhausted, it has swollen up to 25 times its original diameter and is around 170 times as luminous, despite the fact that as its core slowly burns out it is cooling.

To see even further into the future, we need to look towards the brightest star in the northern sky – Sirius. The dog star, as it is commonly known, is twice the mass of the Sun and still fully in the main sequence. But obscured by the glare of Sirius A is a faint companion, Sirius B. This is a star that has already burnt through its fuel, swollen into a red giant and the outer layers have drifted off into space, leaving the fading core of the star about the size of the Earth, known as a white dwarf.

These stars are just two examples amongst many that point us towards the ultimate fate of our Sun, a fate that we believe will play out over the next 5 billion years or so.

Just like Arcturus, as the Sun exhausts its hydrogen fuel, its outer edge will inflate and it will enter a red giant phase. Expanding millions of kilometres out into space, it will engulf Mercury first. Venus’s fate will be sealed next as the Sun expands further. Some models predict that Earth may just escape the fiery end of its neighbours – heated to 1,000 degrees Celsius but hanging on beyond the edge of the dying star as its orbit extends out due to the lessening mass of the Sun. Dead but not destroyed, Earth and Mars will orbit as burned-out relics of their former selves. The era of the four rocky inner planets will be over, the billions of lives lived on the surface of one of them nothing but a distant memory, but within our Solar System lies another family of rocky worlds whose moment in the Sun may be to come.

A NEW HOPE

Far beyond the asteroid belt, millions of miles away from the sun-drenched planets of the inner Solar System, the gas giants of Jupiter and Saturn are home to another family of rocky worlds. Jupiter alone has 79 known moons orbiting it, a menagerie of satellites of multiple shapes and sizes. We’ve been peering at these moons since Galileo Galilei spotted four of them (Io, Europa, Ganymede and Callisto, known as the Galilean moons) over 400 years ago, with his telescope, transforming our understanding of our place in the Solar System.

Today we have explored the Galilean moons not just from afar but close up and found them to be dynamic worlds. Io is fiercely volcanic and Europa, the ice moon, shows tantalising evidence on its surface pointing to a sub-surface ocean sitting below its icy crust. Ganymede and Callisto make up the final two Galilean moons, and just like Europa they are rocky worlds with an abundance of water ice on their surfaces and perhaps their own oceans lurking beneath. These three rocky, frozen worlds are all sitting in the cold outreaches of our Solar System, touched by the distant Sun but barely warmed, lying dormant until perhaps one day the ageing Sun will reach out and turn these bodies into ocean worlds for the very first time.


© NASA/JPL-Caltech/SETI Institute

Created by images taken by the Galileo spacecraft in the late 1990s, this colour view shows Saturn’s icy moon Enceladus – perhaps our closest candidate for sustaining life as we know it.


© NASA/JPL/University of Arizona/University of Idaho

Titan, a frozen moon shrouded in its own atmosphere, as seen from Saturn.

‘The world is my country, science is my religion.’

Christiaan Huygens

The next planet out, Saturn, also has its ever-growing family of moons. Amongst its collection of over 60 confirmed satellites are Titan, the only known moon with a dense atmosphere and liquid lakes on its surface (though they are primarily methane, not water), and Enceladus, a frozen ice moon just like Europa with a liquid ocean deep beneath its ice. We will come to Enceladus in detail in Chapter 4, but for now it’s intriguing to note that this icy moon may be our best current candidate as a second life-sustaining world in our Solar System. Until we go back and explore further we can’t be certain what lies below its surface, but the possibilities that the Cassini probe has so tantalisingly hinted at make it one of the most exciting places for us to visit within the next generation of interplanetary expeditions.

All these ice worlds, sitting dormant in the frozen reaches of the Solar System, offer the promise of a very different future, one in which the rocky worlds of the inner Solar System have been reduced to cinders, and a new generation of worlds waits to awaken. Ice worlds will become water worlds, warmed by the expanding Sun, until our dying star ultimately collapses into a white dwarf.


© NASA/JPL/DLR

From left to right, the moons of Jupiter – Ganymede, Callisto and Io – are dynamic worlds; the former two lie dormant, waiting to be awakened by the warmth of the Sun.

The Planets

Подняться наверх