Читать книгу The Sea Around Us - Rachel Carson - Страница 11

The Sunless Sea

Оглавление

Table of Contents

WHERE GREAT WHALES COME SAILING BY,

SAIL AND SAIL, WITH UNSHUT EYE.

—Matthew Arnold

BETWEEN the sunlit surface waters of the open sea and the hidden hills and valleys of the ocean floor lies the least-known region of the sea. These deep, dark waters, with all their mysteries and their unsolved problems, cover a very considerable part of the earth. The whole world ocean extends over about three-fourths of the surface of the globe. If we subtract the shallow areas of the continental shelves and the scattered banks and shoals, where at least the pale ghost of sunlight moves over the underlying bottom, there still remains about half the earth that is covered by miles-deep, lightless water, that has been dark since the world began.

This region has withheld its secrets more obstinately than any other. Man, with all his ingenuity, has been able to venture only to its threshold. Wearing a diving helmet, he can walk on the ocean floor about 10 fathoms down. He can descend to an extreme limit of about 500 feet in a complete diving suit, so heavily armored that movement is almost impossible, carrying with him a constant supply of oxygen. Only two men in all the history of the world have had the experience of descending, alive, beyond the range of visible light. These men are William Beebe and Otis Barton. In the bathysphere, they reached a depth of 3028 feet in the open ocean off Bermuda, in the year 1934. Barton alone, in a steel sphere known as the benthoscope, descended to the great depth of 4500 feet off California, in the summer of 1949.[2]

Although only a fortunate few can ever visit the deep sea, the precise instruments of the oceanographer, recording light penetration, pressure, salinity, and temperature, have given us the materials with which to reconstruct in imagination these eerie, forbidding regions. Unlike the surface waters, which are sensitive to every gust of wind, which know day and night, respond to the pull of sun and moon, and change as the seasons change, the deep waters are a place where change comes slowly, if at all. Down beyond the reach of the sun’s rays, there is no alternation of light and darkness. There is rather an endless night, as old as the sea itself. For most of its creatures, groping their way endlessly through its black waters, it must be a place of hunger, where food is scarce and hard to find, a shelterless place where there is no sanctuary from ever-present enemies, where one can only move on and on, from birth to death, through the darkness, confined as in a prison to his own particular layer of the sea.

They used to say that nothing could live in the deep sea. It was a belief that must have been easy to accept, for without proof to the contrary, how could anyone conceive of life in such a place?

A century ago the British biologist Edward Forbes wrote: ‘As we descend deeper and deeper into this region, the inhabitants become more and more modified, and fewer and fewer, indicating our approach to an abyss where life is either extinguished, or exhibits but a few sparks to mark its lingering presence.’ Yet Forbes urged further exploration of ‘this vast deep-sea region’ to settle forever the question of the existence of life at great depths.

Even then, the evidence was accumulating. Sir John Ross, during his exploration of the arctic seas in 1818, had brought up from a depth of 1000 fathoms mud in which there were worms, ‘thus proving there was animal life in the bed of the ocean notwithstanding the darkness, stillness, silence, and immense pressure produced by more than a mile of superincumbent water.’

Then from the surveying ship Bulldog, examining a proposed northern route for a cable from Faroe to Labrador in 1860, came another report. The Bulldog’s sounding line, which at one place had been allowed to lie for some time on the bottom at a depth of 1260 fathoms, came up with 13 starfish clinging to it. Through these starfish, the ship’s naturalist wrote, ‘the deep has sent forth the long coveted message.’ But not all the zoologists of the day were prepared to accept the message. Some doubters asserted that the starfish had ‘convulsively embraced’ the line somewhere on the way back to the surface.

In the same year, 1860, a cable in the Mediterranean was raised for repairs from a depth of 1200 fathoms. It was found to be heavily encrusted with corals and other sessile animals that had attached themselves at an early stage of development and grown to maturity over a period of months or years. There was not the slightest chance that they had become entangled in the cable as it was being raised to the surface.

Then the Challenger, the first ship ever equipped for oceanographic exploration, set out from England in the year 1872 and traced a course around the globe. From bottoms lying under miles of water, from silent deeps carpeted with red clay ooze, and from all the lightless intermediate depths, net-haul after net-haul of strange and fantastic creatures came up and were spilled out on the decks. Poring over the weird beings thus brought up for the first time into the light of clay, beings no man had ever seen before, the Challenger scientists realized that life existed even on the deepest floor of the abyss.

The recent discovery that a living cloud of some unknown creatures is spread over much of the ocean at a depth of several hundred fathoms below the surface is the most exciting thing that has been learned about the ocean for many years.

When, during the first quarter of the twentieth-century, echo sounding was developed to allow ships while under way to record the depth of the bottom, probably no one suspected that it would also provide a means of learning something about deep-sea life. But operators of the new instruments soon discovered that the sound waves, directed downward from the ship like a beam of light, were reflected back from any solid object they met. Answering echoes were returned from intermediate depths, presumably from schools of fish, whales, or submarines; then a second echo was received from the bottom.

These facts were so well established by the late 1930’s that fishermen had begun to talk about using their fathometers to search for schools of herring. Then the war brought the whole subject under strict security regulations, and little more was heard about it. In 1946, however, the United States Navy issued a significant bulletin. It was reported that several scientists, working with sonic equipment in deep water off the California coast, had discovered a widespread ‘layer’ of some sort, which gave back an answering echo to the sound waves. This reflecting layer, seemingly suspended between the surface and the floor of the Pacific, was found over an area 300 miles wide. It lay from 1000 to 1500 feet below the surface. The discovery was made by three scientists, C. F. Eyring, R. J. Christensen, and R. W. Raitt, aboard the U.S.S. Jasper in 1942, and for a time this mysterious phenomenon, of wholly unknown nature, was called the ECR layer. Then in 1945 Martin W. Johnson, marine biologist of the Scripps Institution of Oceanography, made a further discovery which gave the first clue to the nature of the layer. Working aboard the vessel E. W. Scripps, Johnson found that whatever sent back the echoes moved upward and downward in rhythmic fashion, being found near the surface at night, in deep water during the day. This discovery disposed of speculations that the reflections came from something inanimate, perhaps a mere physical discontinuity in the water, and showed that the layer is composed of living creatures capable of controlled movement.

From this time on, discoveries about the sea’s ‘phantom bottom’ came rapidly. With widespread use of echo-sounding instruments, it has become clear that the phenomenon is not something peculiar to the coast of California alone. It occurs almost universally in the deep ocean basins—drifting by day at a depth of several hundred fathoms, at night rising to the surface, and again, before sunrise, sinking into the depths.

On the passage of the U.S.S. Henderson from San Diego to the Antarctic in 1947, the reflecting layer was detected during the greater part of each day, at depths varying from 150 to 450 fathoms, and on a later run from San Diego to Yokosuka, Japan, the Henderson’s fathometer again recorded the layer every day, suggesting that it exists almost continuously across the Pacific.

During July and August 1947, the U.S.S. Nereus made a continuous fathogram from Pearl Harbor to the Arctic and found the scattering layer over all deep waters along this course. It did not develop, however, in the shallow Bering and Chuckchee seas. Sometimes in the morning, the Nereus fathogram showed two layers, responding in different ways to the growing illumination of the water; both descended into deep water, but there was an interval of twenty minutes between the two descents.

Despite attempts to sample it or photograph it, no one is sure what the layer is, although the discovery may be made any day. There are three principal theories, each of which has its group of supporters. According to these theories, the sea’s phantom bottom may consist of small planktonic shrimps, of fishes, or of squids.

As for the plankton theory, one of the most convincing arguments is the well-known fact that many plankton creatures make regular vertical migrations of hundreds of feet, rising toward the surface at night, sinking down below the zone of light penetration very early in the morning. This is, of course, exactly the behavior of the scattering layer. Whatever composes it is apparently strongly repelled by sunlight. The creatures of the layer seem almost to be held prisoner at the end—or beyond the end—of the sun’s rays throughout the hours of daylight, waiting only for the welcome return of darkness to hurry upward into the surface waters. But what is the power that repels; and what the attraction that draws them surfaceward once the inhibiting force is removed? Is it comparative safety from enemies that makes them seek darkness? Is it more abundant food near the surface that lures them back under cover of night?

Those who say that fish are the reflectors of the sound waves usually account for the vertical migrations of the layer by suggesting that the fish are feeding on planktonic shrimp and are following their food. They believe that the air bladder of a fish is, of all structures concerned, most likely from its construction to return a strong echo. There is one outstanding difficulty in the way of accepting this theory: we have no other evidence that concentrations of fish are universally present in the oceans. In fact, almost everything else we know suggests that the really dense populations of fish live over the continental shelves or in certain very definitely determined zones of the open ocean where food is particularly abundant. If the reflecting layer is eventually proved to be composed of fish, the prevailing views of fish distribution will have to be radically revised.

The most startling theory (and the one that seems to have the fewest supporters) is that the layer consists of concentrations of squid, ‘hovering below the illuminated zone of the sea and awaiting the arrival of darkness in which to resume their raids into the plankton-rich surface waters.’ Proponents of this theory argue that squid are abundant enough, and of wide enough distribution, to give the echoes that have been picked up almost everywhere from the equator to the two poles. Squid are known to be the sole food of the sperm whale, found in the open oceans in all temperate and tropical waters. They also form the exclusive diet of the bottlenosed whale and are eaten extensively by most other toothed whales, by seals, and by many sea birds. All these facts argue that they must be prodigiously abundant.

It is true that men who have worked close to the sea surface at night have received vivid impressions of the abundance and activity of squids in the surface waters in darkness. Long ago Johan Hjort wrote:

One night we were hauling long lines on the Faroe slope, working with an electric lamp hanging over the side in order to see the line, when like lightning flashes one squid after another shot towards the light ... In October 1902 we were one night steaming outside the slopes of the coast banks of Norway, and for many miles we could see the squids moving in the surface waters like luminous bubbles, resembling large milky white electric lamps being constantly lit and extinguished.[D]

[D] From The Depths of the Ocean, by Sir John Murray and Johan Hjort, 1912 edition, Macmillan & Co., p. 649.

Thor Heyerdahl reports that at night his raft was literally bombarded by squids; and Richard Fleming says that in his oceanographic work off the coast of Panama it was common to see immense schools of squid gathering at the surface at night and leaping upward toward the lights that were used by the men to operate their instruments. But equally spectacular surface displays of shrimp have been seen, and most people find it difficult to believe in the ocean-wide abundance of squid.

Deep-water photography holds much promise for the solution of the mystery of the phantom bottom. There are technical difficulties, such as the problem of holding a camera still as it swings at the end of a long cable, twisting and turning, suspended from a ship which itself moves with the sea. Some of the pictures so taken look as though the photographer has pointed his camera at a starry sky and swung it in an arc as he exposed the film. Yet the Norwegian biologist Gunnar Rollefson had an encouraging experience in correlating photography with echograms. On the research ship Johan Hjort off the Lofoten Islands, he persistently got reflection of sound from schools of fish in 20 to 30 fathoms. A specially constructed camera was lowered to the depth indicated by the echogram. When developed, the film showed moving shapes of fish at a distance, and a large and clearly recognizable cod appeared in the beam of light and hovered in front of the lens.

Direct sampling of the layer is the logical means of discovering its identity, but the problem is to develop large nets that can be operated rapidly enough to capture swift-moving animals. Scientists at Woods Hole, Massachusetts, have towed ordinary plankton nets in the layer and have found that euphausiid shrimps, glassworms, and other deep-water plankton are concentrated there; but there is still a possibility that the layer itself may actually be made up of larger forms feeding on the shrimps—too large or swift to be taken in the presently used nets. New nets may give the answer. Television is another possibility.[3]

Shadowy and indefinite though they be, these recent indications of an abundant life at mid-depths agree with the reports of the only observers who have actually visited comparable depths and brought back eyewitness accounts of what they saw. William Beebe’s impressions from the bathysphere were of a life far more abundant and varied than he had been prepared to find, although, over a period of six years, he had made many hundreds of net-hauls in the same area. More than a quarter of a mile down, he reported aggregations of living things ‘as thick as I have ever seen them.’ At half a mile—the deepest descent of the bathysphere—Dr. Beebe recalled that ‘there was no instant when a mist of plankton ... was not swirling in the path of the beam.’

The existence of an abundant deep-sea fauna was discovered, probably millions of years ago, by certain whales and also, it now appears, by seals. The ancestors of all whales, we know by fossil remains, were land mammals. They must have been predatory beasts, if we are to judge by their powerful jaws and teeth. Perhaps in their foragings about the deltas of great rivers or around the edges of shallow seas, they discovered the abundance of fish and other marine life and over the centuries formed the habit of following them farther and farther into the sea. Little by little their bodies took on a form more suitable for aquatic life; their hind limbs were reduced to rudiments, which may be discovered in a modern whale by dissection, and the forelimbs were modified into organs for steering and balancing.

Eventually the whales, as though to divide the sea’s food resources among them, became separated into three groups: the plankton-caters, the fish-eaters, and the squid-eaters. The plankton-eating whales can exist only where there are dense masses of small shrimp or copepods to supply their enormous food requirements. This limits them, except for scattered areas, to arctic and antarctic waters and the high temperate latitudes. Fish-eating whales may find food over a somewhat wider range of ocean, but they are restricted to places where there are enormous populations of schooling fish. The blue water of the tropics and of the open ocean basins offers little to either of these groups. But that immense, square-headed, formidably toothed whale known as the cachalot or sperm whale discovered long ago what men have known for only a short time—that hundreds of fathoms below the almost untenanted surface waters of these regions there is an abundant animal life. The sperm whale has taken these deep waters for his hunting grounds; his quarry is the deep-water population of squids, including the giant squid Architeuthis, which lives pelagically at depths of 1500 feet or more. The head of the sperm whale is often marked with long stripes, which consist of a great number of circular scars made by the suckers of the squid. From this evidence we can imagine the battles that go on, in the darkness of the deep water, between these two huge creatures—the sperm whale with its yo-ton bulk, the squid with a body as long as 30 feet, and writhing, grasping arms extending the total length of the animal to perhaps 50 feet.

The greatest depth at which the giant squid lives is not definitely known, but there is one instructive piece of evidence about the depth to which sperm whales descend, presumably in search of the squids. In April 1932, the cable repair ship All America was investigating an apparent break in the submarine cable between Balboa in the Canal Zone and Esmeraldas, Ecuador. The cable was brought to the surface off the coast of Colombia. Entangled in it was a dead 45-foot male sperm whale. The submarine cable was twisted around the lower jaw and was wrapped around one flipper, the body, and the caudal flukes. The cable was raised from a depth of 540 fathoms, or 3240 feet.[4]

Some of the seals also appear to have discovered the hidden food reserves of the deep ocean. It has long been something of a mystery where, and on what, the northern fur seals of the eastern Pacific feed during the winter, which they spend off the coast of North America from California to Alaska. There is no evidence that they are feeding to any great extent on sardines, mackerel, or other commercially important fishes. Presumably four million seals could not compete with commercial fishermen for the same species without the fact being known. But there is some evidence on the diet of the fur seals, and it is highly significant. Their stomachs have yielded the bones of a species of fish that has never been seen alive. Indeed, not even its remains have been found anywhere except in the stomachs of seals. Ichthyologists say that this ‘seal fish’ belongs to a group that typically inhabits very deep water, off the edge of the continental shelf.

How either whales or seals endure the tremendous pressure changes involved in dives of several hundred fathoms is not definitely known. They are warm-blooded mammals like ourselves. Caisson disease, which is caused by the rapid accumulation of nitrogen bubbles in the blood with sudden release of pressure, kills human divers if they are brought up rapidly from depths of 200 feet or so. Yet, according to the testimony of whalers, a baleen whale, when harpooned, can dive straight down to a depth of half a mile, as measured by the amount of line carried out. From these depths, where it has sustained a pressure of half a ton on every inch of body, it returns almost immediately to the surface. The most plausible explanation is that, unlike the diver, who has air pumped to him while he is under water, the whale has in its body only the limited supply it carries down, and does not have enough nitrogen in its blood to do serious harm. The plain truth is, however, that we really do not know, since it is obviously impossible to confine a living whale and experiment on it, and almost as difficult to dissect a dead one satisfactorily.

At first thought it seems a paradox that creatures of such great fragility as the glass sponge and the jellyfish can live under the conditions of immense pressure that prevail in deep water. For creatures at home in the deep sea, however, the saving fact is that the pressure inside their tissues is the same as that without, and, as long as this balance is preserved, they are no more inconvenienced by a pressure of a ton or so than we are by ordinary atmospheric pressure. And most abyssal creatures, it must be remembered, live out their whole lives in a comparatively restricted zone, and are never required to adjust themselves to extreme changes of pressure.

But of course there are exceptions, and the real miracle of sea life in relation to great pressure is not the animal that lives its whole life on the bottom, bearing a pressure of perhaps five or six tons, but those that regularly move up and down through hundreds or thousands of feet of vertical change. The small shrimps and other planktonic creatures that descend into deep water during the day are examples. Fish that possess air bladders, on the other hand, are vitally affected by abrupt changes of pressure, as anyone knows who has seen a trawler’s net raised from a hundred fathoms. Apart from the accident of being captured in a net and hauled up through waters of rapidly diminishing pressures, fish may sometimes wander out of the zone to which they are adjusted and find themselves unable to return. Perhaps in their pursuit of food they roam upward to the ceiling of the zone that is theirs, and beyond whose invisible boundary they may not stray without meeting alien and inhospitable conditions. Moving from layer to layer of drifting plankton as they feed, they may pass beyond the boundary. In the lessened pressure of these upper waters the gas enclosed within the air bladder expands. The fish becomes lighter and more buoyant. Perhaps he tries to fight his way down again, opposing the upward lift with all the power of his muscles. If he does not succeed, he ‘falls’ to the surface, injured and dying, for the abrupt release of pressure from without causes distension and rupture of the tissues.

The compression of the sea under its own weight is relatively slight, and there is no basis for the old and picturesque belief that, at the deeper levels, the water resists the downward passage of objects from the surface. According to this belief, sinking ships, the bodies of drowned men, and presumably the bodies of the larger sea animals not consumed above by hungry scavengers, never reach the bottom, but come to rest at some level determined by the relation of their own weight to the compression of the water, there to drift forever. The fact is that anything will continue to sink as long as its specific gravity is greater than that of the surrounding water, and all large bodies descend, in a matter of a few days, to the ocean floor. As mute testimony to this fact, we bring up from the deepest ocean basins the teeth of sharks and the hard ear bones of whales.

Nevertheless the weight of sea water—the pressing down of miles of water upon all the underlying layers—does have a certain effect upon the water itself. If this downward compression could suddenly be relaxed by some miraculous suspension of natural laws, the sea level would rise about 93 feet all over the world. This would shift the Atlantic coastline of the United States westward a hundred miles or more and alter other familiar geographic outlines all over the world.

Immense pressure, then, is one of the governing conditions of life in the deep sea; darkness is another. The unrelieved darkness of the deep waters has produced weird and incredible modifications of the abyssal fauna. It is a blackness so divorced from the world of the sunlight that probably only the few men who have seen it with their own eyes can visualize it. We know that light fades out rapidly with descent below the surface. The red rays are gone at the end of the first 200 or 300 feet, and with them all the orange and yellow warmth of the sun. Then the greens fade out, and at 1000 feet only a deep, dark, brilliant blue is left. In very clear waters the violet rays of the spectrum may penetrate another thousand feet. Beyond this is only the blackness of the deep sea.

In a curious way, the colors of marine animals tend to be related to the zone in which they live. Fishes of the surface waters, like the mackerel and herring, often are blue or green; so are the floats of the Portuguese men-of-war and the azure-tinted wings of the swimming snails. Down below the diatom meadows and the drifting sargassum weed, where the water becomes ever more deeply, brilliantly blue, many creatures are crystal clear. Their glassy, ghostly forms blend with their surroundings and make it easier for them to elude the ever-present, ever-hungry enemy. Such are the transparent hordes of the arrowworms or glassworms, the comb jellies, and the larvae of many fishes.

At a thousand feet, and on down to the very end of the sun’s rays, silvery fishes are common, and many others are red, drab brown, or black. Pteropods are a dark violet. Arrowworms, whose relatives in the upper layers are colorless, are here a deep red. Jellyfish medusae, which above would be transparent, at a depth of 1000 feet are a deep brown.

At depths greater than 1500 feet, all the fishes are black, deep violet, or brown, but the prawns wear amazing hues of red, scarlet, and purple. Why, no one can say. Since all the red rays are strained out of the water far above this depth, the scarlet raiment of these creatures can only look black to their neighbors.

The deep sea has its stars, and perhaps here and there an eerie and transient equivalent of moonlight, for the mysterious phenomenon of luminescence is displayed by perhaps half of all the fishes that live in dimly lit or darkened waters, and by many of the lower forms as well. Many fishes carry luminous torches that can be turned on or off at will, presumably helping them find or pursue their prey. Others have rows of lights over their bodies, in patterns that vary from species to species and may be a sort of recognition mark or badge by which the bearer can be known as friend or enemy. The deep-sea squid ejects a spurt of fluid that becomes a luminous cloud, the counterpart of the ‘ink’ of his shallow-water relative.

Down beyond the reach of even the longest and strongest of the sun’s rays, the eyes of fishes become enlarged, as though to make the most of any chance illumination of whatever sort, or they may become telescopic, large of lens, and protruding. In deep-sea fishes, hunting always in dark waters, the eyes tend to lose the ‘cones’ or color-perceiving cells of the retina, and to increase the ‘rods,’ which perceive dim light. Exactly the same modification is seen on land among the strictly nocturnal prowlers which, like abyssal fish, never see the sunlight.

In their world of darkness, it would seem likely that some of the animals might have become blind, as has happened to some cave fauna. So, indeed, many of them have, compensating for the lack of eyes with marvelously developed feelers and long, slender fins and processes with which they grope their way, like so many blind men with canes, their whole knowledge of friends, enemies, or food coming to them through the sense of touch.

The last traces of plant life are left behind in the thin upper layer of water, for no plant can live below about 600 feet even in very clear water, and few find enough sunlight for their food-manufacturing activities below 200 feet. Since no animal can make its own food, the creatures of the deeper waters live a strange, almost parasitic existence of utter dependence on the upper layers. These hungry carnivores prey fiercely and relentlessly upon each other, yet the whole community is ultimately dependent upon the slow rain of descending food particles from above. The components of this never-ending rain are the dead and dying plants and animals from the surface, or from one of the intermediate layers. For each of the horizontal zones or communities of the sea that lie, in tier after tier, between the surface and the sea bottom, the food supply is different and in general poorer than for the layer above. There is a hint of the fierce and uncompromising competition for food in the saber-toothed jaws of some of the small, dragonlike fishes of the deeper waters, in the immense mouths and in the elastic and distensible bodies that make it possible for a fish to swallow another several times its size, enjoying swift repletion after a long fast.

Pressure, darkness, and—we should have added only a few years ago—silence, are the conditions of life in the deep sea. But we know now that the conception of the sea as a silent place is wholly false. Wide experience with hydrophones and other listening devices for the detection of submarines has proved that, around the shore lines of much of the world, there is an extraordinary uproar produced by fishes, shrimps, porpoises, and probably other forms not yet identified. There has been little investigation as yet of sound in the deep, offshore areas, but when the crew of the Atlantis lowered a hydrophone into deep water off Bermuda, they recorded strange mewing sounds, shrieks, and ghostly moans, the sources of which have not been traced. But fish of shallower zones have been captured and confined in aquaria, where their voices have been recorded for comparison with sounds heard at sea, and in many cases satisfactory identification can be made.

During the Second World War the hydrophone network set up by the United States Navy to protect the entrance to Chesapeake Bay was temporarily made useless when, in the spring of 1942, the speakers at the surface began to give forth, every evening, a sound described as being like ‘a pneumatic drill tearing up pavement.’ The extraneous noises that came over the hydrophones completely masked the sounds of the passage of ships. Eventually it was discovered that the sounds were the voices of fish known as croakers, which in the spring move into Chesapeake Bay from their offshore wintering grounds. As soon as the noise had been identified and analyzed, it was possible to screen it out with an electric filter, so that once more only the sounds of ships came through the speakers.

Later in the same year, a chorus of croakers was discovered off the pier of the Scripps Institution at La Jolla. Every year from May until late September the evening chorus begins about sunset, and ‘increases gradually to a steady uproar of harsh froggy croaks, with a background of soft drumming. This continues unabated for two to three hours and finally tapers off to individual outbursts at rare intervals.’ Several species of croakers isolated in aquaria gave sounds similar to the ‘froggy croaks,’ but the authors of the soft background drumming—presumably another species of croaker—have not yet been discovered.

One of the most extraordinarily widespread sounds of the undersea is the crackling, sizzling sound, like dry twigs burning or fat frying, heard near beds of the snapping shrimp. This is a small, round shrimp, about half an inch in diameter, with one very large claw which it uses to stun its prey. The shrimp are forever clicking the two joints of this claw together, and it is the thousands of clicks that collectively produce the noise known as shrimp crackle. No one had any idea the little snapping shrimps were so abundant or so widely distributed until their signals began to be picked up on hydrophones. They have been heard all over a broad band that extends around the world, between latitudes 35° N and 35° S, (for example, from Cape Hatteras to Buenos Aires) in ocean waters less than 30 fathoms deep.

Mammals as well as fishes and crustaceans contribute to the undersea chorus. Biologists listening through a hydrophone in an estuary of the St. Lawrence River heard ‘high-pitched resonant whistles and squeals, varied with the ticking and clucking sounds slightly reminiscent of a string orchestra tuning up, as well as mewing and occasional chirps.’ This remarkable medley of sounds was heard only while schools of the white porpoise were seen passing up or down the river, and so was assumed to be produced by them.[5]

The mysteriousness, the eerieness, the ancient unchangingness of the great depths have led many people to suppose that some very old forms of life—some ‘living fossils’—may be lurking undiscovered in the deep ocean. Some such hope may have been in the minds of the Challenger scientists. The forms they brought up in their nets were weird enough, and most of them had never before been seen by man. But basically they were modern types. There was nothing like the trilobites of Cambrian time or the sea scorpions of the Silurian, nothing reminiscent of the great marine reptiles that invaded the sea in the Mesozoic. Instead, there were modern fishes, squids, and shrimps, strangely and grotesquely modified, to be sure, for life in the difficult deep-sea world, but clearly types that have developed in rather recent geologic time.

Far from being the original home of life, the deep sea has probably been inhabited for a relatively short time. While life was developing and flourishing in the surface waters, along the shores, and perhaps in the rivers and swamps, two immense regions of the earth still forbade invasion by living things. These were the continents and the abyss. As we have seen, the immense difficulties of surviving on land were first overcome by colonists from the sea about 300 million years ago. The abyss, with its unending darkness, its crushing pressures, its glacial cold, presented even more formidable difficulties. Probably the successful invasion of this region—at least by higher forms of life—occurred somewhat later.

Yet in recent years there have been one or two significant happenings that have kept alive the hope that the deep sea may, after all, conceal strange links with the past. In December 1938, off the southeast tip of Africa, an amazing fish was caught alive in a trawl—a fish that was supposed to have been dead for at least 60 million years! This is to say, the last known fossil remains of its kind date from the Cretaceous, and no living example had been recognized in historic time until this lucky net-haul.

The fishermen who brought it up in their trawl from a depth of only 40 fathoms realized that this five-foot, bright blue fish, with its large head and strangely shaped scales, fins, and tail, was different from anything they had ever caught before, and on their return to port they took it to the nearest museum. This single specimen of Latimeria, as the fish was christened, is so far the only one that has been captured, and it seems a reasonable guess that it may inhabit depths below those ordinarily fished, and that the South African specimen was a stray from its usual habitat.[6]

Occasionally a very primitive type of shark, known from its puckered gills as a ‘frillshark,’ is taken in waters between a quarter of a mile and half a mile down. Most of these have been caught in Norwegian and Japanese waters—there are only about 50 preserved in the museums of Europe and America—but recently one was captured off Santa Barbara, California. The frillshark has many anatomical features similar to those of the ancient sharks that lived 25 to 30 million years ago. It has too many gills and too few dorsal fins for a modern shark, and its teeth, like those of fossil sharks, are three-pronged and briarlike. Some ichthyologists regard it as a relic derived from very ancient shark ancestors that have died out in the upper waters but, through this single species, are still carrying on their struggle for earthly survival, in the quiet of the deep sea.

Possibly there are other such anachronisms lurking down in these regions of which we know so little, but they are likely to be few and scattered. The terms of existence in these deep waters are far too uncompromising to support life unless that life is plastic, molding itself constantly to the harsh conditions, seizing every advantage that makes possible the survival of living protoplasm in a world only a little less hostile than the black reaches of interplanetary space.

The Sea Around Us

Подняться наверх