Читать книгу Fundamentals of Solar Cell Design - Rajender Boddula - Страница 49
References
Оглавление1. N S Lewis, Toward cost-effective solar energy use. Science, 315: 798–801, 2007.
2. H. B. Gray, Powering the plant with solar fuel. Nat Chem., 1:7, 2009.
3. K Sivula, Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. The J Phy Chem Letters, 4: 1624–1633, 2013.
4. Zhang JZ, Ultrafast Studies of Electron Dynamics in Semiconductor and Metal Colloidal Nanoparticles: Effects of Size and Surface. Acc. Chem. Res. 30: 423–429, 1997.
5. William Shockley and Hans J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics. 32:3, 510–519, 1961.
6. White, T. P., & Catchpole, K. R., Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Applied Physics Letters, 101(7), 2012.
7. T. Shiyani and T. Bagchi, Hybrid nanostructures for solar energy conversion applications. Nanomaterials and Energy, 9:1–8, 2020.
8. Yu, P., Yao, Y., Wu, J., Niu, X., Rogach, A. L., & Wang, Z., Effects of Plasmonic Metal Core-Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells. Scientific Reports, 7(1), 2017.
9. Mubeen S, Lee J, Singh N, Krämer S, Stucky GD, Moskovits M, An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol., 8: 247–251, 2013.
10. Clavero C, Plasmon-induced hot-electron generation at nanoparticle-metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics, 8: 95–103, 2014.
11. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238: 37–38, 1972.
12. Grätzel M, Photoelectrochemical cells. Nature, 414: 338–344, 2001.
13. Daniel Paz-Soldan et al., Jointly Tuned Plasmonic–Excitonic Photovoltaics Using Nanoshells. Nano Lett. 13, 4, 1502–1508, 2013.
14. Ye, W., Ran, L., Hao, H., Yujie, X., Plasmonic nanostructures in solar energy conversion. J. Mater. Chem. C., 5, 1008, 2017.
15. Wei E. I. Sha, Hugh L. Zhu, Luzhou Chen, Weng Cho Chew and Wallace C. H. Choy, A General Design Rule to Manipulate Photocarrier Transport Path in Solar Cells and Its Realization by the Plasmonic-Electrical Effect. Scientific Reports, 5, 8525, 2015.
16. Yoon Hee Jang, Yu Jin Jang, Seokhyoung Kim, Li Na Quan, Kyungwha Chung, and Dong Ha Kim, Plasmonic Solar Cells: From Rational Design to Mechanism Overview. Chem. Rev., 116, 14982−15034, 2016.
17. K. L. Chopra, P. D. Paulson, V. Dutta, Thin film solar cells: an overview. Progress in thin film solar cells, 12:2–3, pp. 69–92, 2004.
18. Reineck P, Lee GP, Brick D, Karg M, Mulvaney P, Bach U, A solid-state plasmonic solar cell via metal nanoparticle self-assembly. Adv Mater, 24:4729, 4750–4755, 4729, 2012.
19. Ingram DB, Linic S, Water splitting on composite plasmonic-metal/ semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc.133: 5202–5205, 2011.
20. Du L. Ultrafast plasmon induced electron injection mechanism in gold-TiO2 nanoparticle system. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15: 21–30, 2013.
21. Kale MJ, Avanesian T, Christopher P, Direct Photocatalysis by Plasmonic Nanostructures. ACS Catalysis, 4: 116–128, 2014.
22. Gustav Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der Physik, 330:3, pp. 377–445, 1908.
23. M. A. Green and S. Pillai, Harnessing Plasmonics For Solar Cells. Nature Photon. 6, 130, 2012.
24. Tian Y, Tatsuma T, Mechanisms, and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc., 127: 7632–7637, 2005.
25. Syed Mubeen, Joun Lee, Woo-ram Lee, Nirala Singh, Galen D. Stucky, and Martin Moskovits, On the Plasmonic Photovoltaic. ACS Nano, 8, 6, 6066–6073, 2014.
26. Liang, Z., Sun, J., Jiang, Y., Jiang, L., and Chen, X, Plasmonic Enhanced Optoelectronic Devices. Plasmonics, 9, 859–866, 2014.
27. Atwater HA, Polman A, Plasmonics for improved photovoltaic devices. Nat Mater., 9: 205–213, 2010.
28. Stafford, S., Garnier, C., and Gun’Ko, Y. K., Polyelectrolyte-stabilised magnetic-plasmonic nanocomposites. Nanomaterials, 8(12), 1044, 2018.
29. Pastoriza-Santos, I., Kinnear, C., Pérez-Juste, J., Mulvaney, P., & Liz-Marzán, L. M., Plasmonic polymer nanocomposites. Nature Reviews Materials, 3, 375–391, 2018.
30. Catchpole, K. R., Mokkapati, S., Beck, F., Wang, E. C., McKinley, A., Basch, A., & Lee, J., Plasmonics and nanophotonics for photovoltaics. MRS Bulletin. Materials Research Society, 2011.
31. Dunbar, R. B., Pfadler, T., & Schmidt-Mende, L., Highly absorbing solar cells—a survey of plasmonic nanostructures. Optics Express, 20(S2), A177, 2012.
32. Jiang, R., Li, B., Fang, C., and Wang, J., Metal/semiconductor hybrid nano-structures for plasmon-enhanced applications, Advanced Materials. Wiley-VCH Verlag, 2014.
33. Wu, N., Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale, 2018.
34. Erwin, W. R., Zarick, H. F., Talbert, E. M., and Bardhan, R., Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy and Environmental Science, 2016.
35. Spinelli, P., Ferry, E., Van De Groep, J., Van Lare, M., Verschuuren, A., Schropp, I., Polman, A., Plasmonic light trapping in thin-film Si solar cells. Journal of Optics, 2012.
36. Ueno, K., Oshikiri, T., Sun, Q., Shi, X., & Misawa, H., Solid-State Plasmonic Solar Cells. Chemical Reviews, 2018.
37. N. Papanikolaou, Optical Properties of Metallic Nanoparticle Arrays on a Thin Metallic Film. Phys. Rev. B., 75, 235426, 2007.
38. Y. A. Akimov and W. S. Koh, Design of Plasmonic Nanoparticles For Efficient Subwavelength Light Trapping in Thin-Film Solar Cells. Plasmonics, 6, 155, 2011.
39. F. J. Beck, A. Polman and K. R. Catchpole, Tunable Light Trapping For Solar Cells Using Localized Surface Plasmons. J. Appl. Phys. 105, 114310, 2009.
40. Lin Y., Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review. Chemical Physics Letters, 507: 209–215, 2011.
41. Bhattacharya, J., Chakravarty, N., Pattnaik, S., Dennis Slafer, W., Biswas, R., & Dalal, V. L., A photonic-plasmonic structure for enhancing light absorption in thin film solar cells. Applied Physics Letters, 99(13), 2011.
42. Xngange Rni, Jih Cengh, Soqing h Zangin, Xcheni Lin, Tgkea Roij, Lnu Ho, Jhuio Hun, Wllace C. H. Coy, High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmon-Optical and Plasmon-Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars. Small, 2016.
43. Su Y-H, Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmonsensitized solar cell. Light: Science & Applications, 1: e14, 2012.
44. V. E. Ferry et al., Improved Red-Response in Thin Film a-Si:H Solar Cells With Nanostructured Plasmonic Back Reflectors. Appl. Phys. Lett. 95, 183503, 2009.
45. M. Kirkengen, J. Bergil and Y. M. Galperin, Direct Generation of Charge Carriers in c-Si Solar Cells Due to Embedded Nanoparticles. J. Appl. Phys. 102, 093713, 2007.
46. Yocefu Hattori, Mohamed Abdellah, Jie Meng, Kaibo Zheng, Jacinto Sá, Simultaneous Hot Electron and Hole Injection upon Excitation of Gold Surface Plasmon. J. Phys. Chem. Lett., 10:11, 3140–3146, 2019.
47. Amalraj Peter Amalathas, and Maan M Alkaisi, Nanostructures for Light Trapping in Thin Film Solar Cells. Micromachines, 10, 619, 2019.
48. A. P. Kulkarni et al., Plasmon-Enhanced Charge Carrier Generation in Organic Photovoltaic Films Using Silver Nanoprisms. Nano Lett. 10, 1501, 2010.
49. Ragip A. Pala, Justin White, Edward Barnard, John Liu, and Mark L. Brongersma, Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements. Adv. Mater., 21, 3504–3509, 2009.
50. Chong Tong, Juhyung Yun, Haomin Song, Qiaoqiang Gann, Wayne A. Anderson, Plasmonic-enhanced Si Schottky barrier solar cells. Solar Energy Materials & Solar Cells, 120, 591–595, 2014.
51. Nakayama K, Tanabe K, Atwater HA, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 93: 121904, 2008.
52. S. Pillai and M. A. Green, Plasmonics For Photovoltaic Applications. Sol. Energy Mater. Sol. Cells, 94, 1481, 2010.
53. Yinan Zhang, Xi Chen, Zi Ouyang, Hongyan Lu, Baohua Jia, Zhengrong Shi, and Min Gu, Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Optical Materials Express, 3:4, 489–495, 2013.
54. Zengji Yue, Boyuan Cai, Lan Wang, Xiaolin Wang, Min Gu, Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index. Sci. Adv., 2:e1501536, 2016.
55. Uttam K. Kumawat, Kamal Kumar, Sumakesh Mishra, and Anuj Dhawan, Plasmonic-enhanced microcrystalline silicon solar cells. Journal of the Optical Society of America B, 37:2, pp. 495–504, 2020.
56. Stuart HR, Hall DG, Absorption enhancement in silicon-on-insulator waveguides using metal island films. Applied Physics Letters, 69: 2327, 1996.
57. Derkacs D, Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Applied Physics Letters, 89: 093103, 2006.
58. Schaadt DM, Feng B, Yu ET, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Applied Physics Letters, 2005; 86: 063106.
59. Wu K, Rodríguez-Córdoba WE, Yang Y, Lian T, Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures. Nano Lett. 13: 5255–5263, 2013.
60. J.-Y. Lee et al., Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano Lett. 8, 689, 2008.
61. Priyanka U. Londhe, Ashwini B. Rohom, N. B. Chaure, Improvement in the CIGS Solar Cell Parameters by Using Plasmonic (Au) Nanoparticle, Nanoscience and Nanotechnology, 6:1A, pp. 43–46, 2016.
62. Sangsu Kim, Jonghee Suh, Taeyueb Kim, Jinki Hong, and Shinhaeng Cho, Plasmonic effect of spray-deposited Au nanoparticles on the performance of CSS CdS/CdTe solar cells. Applied Surface Science, 350, pp. 69–73, 2015.
63. N. Sapalatu, J. Hiie, N. Maticiuc, M. Krunks, A. Katerski, V. Miklli and I. Sildos, Plasmon-enhanced performance of CdS/CdTe solar cells using Au nanoparticles. Optics Express, 27:5, pp. 22017–22024, 2019.
64. Omar A M Abdelraouf, Ahmed Shaker, Nageh K. Allam, Enhancing light absorption inside CZTS solar cells using plasmonic and dielectric wire grating metasurface. Metamaterials XI, 10671, 106712K, 2018.
65. Zhang, D., Choy, W. C. H., Xie, F., Sha, W. E. I., Li, X., Ding, B., Cao, Y., Plasmonic electrically functionalized TiO2 for high-performance organic solar cells. Advanced Functional Materials, 23(34), 4255–4261, 2013.
66. Su, Y. H., Ke, Y. F., Cai, S. L., & Yao, Q. Y., Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light: Science and Applications, 1, June, 2012.
67. Liu L. CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Research, 4: 249– 258, 2010.
68. Li J, Cushing SK, Zheng P, Meng F, Chu D, Wu N, Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat Commun., 4: 2651, 2013.
69. Chen, X., Jia, B., Zhang, Y., & Gu, M., Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light: Science and Applications, 2, August, 2013.
70. Chen, X., & Gu, M., An efficiency breakthrough in perovskite solar cells realized by Al-coated Cu nanoparticles. Optics InfoBase Conference Papers, OSA – The Optical Society, 2014.
71. Ding, I. K., Zhu, J., Cai, W., Moon, S. J., Cai, N., Wang, P., McGehee, M. D., Plasmonic Dye-sensitized solar cells. Advanced Energy Materials, 1(1), 52–57, 2011.
72. Song, D. H., Kim, H. Y., Kim, H. S., Suh, J. S., Jun, B. H., and Rho, W. Y., Preparation of plasmonic monolayer with Ag and Au nanoparticles for dye-sensitized solar cells. Chemical Physics Letters, 687, 152–157, 2017. https://doi.org/10.1016/j.cplett.2017.08.051
73. Nikhil Chander, Puneet Singh, A.F. Khan, Viresh Dutta, Vamsi K. Komarala, Photocurrent enhancement by surface plasmon resonance of gold nanoparticles in spray deposited large area dye sensitized solar cells. Thin Solid Films, 568, 74–80, 2014.
74. Bhardwaj, S., Pal, A., Chatterjee, K., Rana, T. H., Bhattacharya, G., Roy, S. S., Biswas, S., Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2–Au nanocomposite in TiO2 photoanode. Journal of Materials Science, 53(11), 8460–8473, 2018.
75. C. Hägglund, M. Zäch and B. Kasemo, Enhanced Charge Carrier Generation in Dye Sensitized Solar Cells By Nanoparticle Plasmons. Appl. Phys. Lett. 92, 013113, 2008.
76. I.-K. Ding et al., Plasmonic Dye-Sensitized Solar Cells. Adv. Energy Mater. 1, 51, 2011.
77. Li J, Cushing SK, Zheng P, Senty T, Meng F, Bristow AD, Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J Am Chem Soc., 136: 8438–8449, 2014.
78. Choi H, Chen WT, Kamat PV, Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano., 6: 4418–4427, 2012.
79. Liu Z, Hou W, Pavaskar P, Aykol M, Cronin SB, Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett., 11: 1111–1116, 2011.
80. Linic S, Christopher P, Ingram DB, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater., 10: 911–921, 2011.
81. Si Chen, Yong Jie Wang, Qipeng Liu, Guzheng Shi, Zeke Liu, Kunyuan Lu, Lu Han, Xufeng Ling, Han Zhang, Si Cheng, Wanli Ma, Broadband Enhancement of PbS Quantum Dot Solar Cells by the Synergistic Effect of Plasmonic Gold Nanobipyramids and Nanospheres. Advanced Energy Materials, 8:8, 1701194, 2018.
82. Chien-Chung Lin, Hsin-Chu Chen, Yu Lin Tsai, Hau-Vei Han, Huai-Shiang Shih, Yi-An Chang, Hao-Chung Kuo, and Peichen Yu, Highly efficient CdS-quantum-dot-sensitized GaAs solar cells. Optic Express. 20:S2, pp. A319-A326, 2012.
83. Sopit Phetsang et al., Investigation of a gold quantum dot/plasmonic gold nanoparticle system for improvement of organic solar cells. Nanoscale Adv., 1, 792–798, 2019.
84. Lin, S. J., Lee, K. C., Wu, J. L., and Wu, J. Y., Enhanced performance of dye-sensitized solar cells via plasmonic sandwiched structure. Applied Physics Letters, 99(4), 2011.
85. S. Saravanan, R. Kato, M. Balamurugan, S. Kaushik, T. Soga, Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver nanoparticles. Journal of Science: Advanced Materials and Devices 2, 418e424, 2017.
86. Kai Yao, Hongjie Zhong, Zhiliang Liu, Zhiliang Liu, Plasmonic Metal Nanoparticles with Core–Bishell Structure for High-Performance Organic and Perovskite Solar Cells. ACS Nano 2019, 13, 5, 5397–5409.
87. Xun Cui, Yihuang Chen, Meng Zhang, Yeu Wei Harn, Jiabin Qi, Likun Gao, Zhong Lin Wang, Jinsong Huang, Yingkui Yang, Zhiqun Lin, Tailoring carrier dynamics in perovskite solar cells via precise dimension and architecture control and interfacial positioning of plasmonic nanoparticles. Energy Environ. Sci., 2020. https://doi.org/10.1039/C9EE03937F.
88. Joun Lee, Syed Mubeen, Xiulei Ji, Galen D. Stucky, and Martin Moskovits, Plasmonic Photoanodes for Solar Water Splitting with Visible Light. Nano Lett., 12, 5014−5019, 2012.
89. Wallace C. H. Choy and Xingang Ren, Plasmon-Electrical Effects on Organic Solar Cells by Incorporation of Metal Nanostructures. IEEE Journal of Selected Topics in Quantum Electronics, 22:1, 2016.
90. Stephanie Essig et al., Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nature Energy, 2, 17144, 2017.
91. Romain Cariou et al., III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nature Energy, 2018. https://doi.org/10.1038/s41560-018-0125-0.
92. Kunta Yoshikawa et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2, 17032, 2017.
93. Hung-Ling Chen et al., A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror. Nature Energy, 2019. https://doi.org/10.1038/s41560-019-0434-y.
94. Sheng-Qing Zhu, Bin Bian, Yun-Feng Zhu, Jun Yang, Dan Zhang and Lang Feng, Enhancement in Power Conversion Efficiency of GaAs Solar Cells by Utilizing Gold Nanostar Film for Light-Trapping. Frontiers in Chemistry, 7, 137, 2019.
95. Emily D Kosten, Jackson H Atwater, James Parsons, Albert Polman and Harry, A Atwater, Highly efficient GaAs solar cells by limiting light emission angle. Light: Science & Applications, 2, e45, 2013.
96. Suk In Park et al., GaAs droplet quantum dots with nanometer thin capping layer for plasmonic applications. Nanotechnology, 29, 205602, 2018.
97. Enrico Avancini et al., Effects of Rubidium Fluoride and Potassium Fluoride Postdeposition Treatments on Cu(In,Ga)Se2 Thin Films and Solar Cell Performance. Chem. Mater., 29, 9695–9704, 2017.
98. Veronica Bermudez, and Alejandro Perez-Rodriguez, Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up. Nature Energy, 466:3, 466–475, 2018. https://doi.org/10.1038/s41560-019-0466-3.
99. W. K. Metzger et. al., Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nature Energy, 2019. https://doi.org/10.1038/s41560-019-0446-7.
100. Yuan Zhao, Mathieu Boccard, Shi Liu, Jacob Becker, Xin-Hao Zhao, Calli M. Campbell, Ernesto Suarez, Maxwell B. Lassise, Zachary Holman and Yong-Hang Zhang, Monocrystalline CdTe solar cells with open-circuit voltage over 1V and effciency of 17%. Nature Energy, 1, 16067, 2016.
101. Chang Yan et al., Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy, 2018. https://doi.org/10.1038/s41560-018-0206-0.
102. Joshua Moskowitz, Rashad Sindi, and Chris D. Geddes, Plasmonic Electricity II: The Effect of Particle Size, Solvent Permittivity, Applied Voltage, and Temperature on Fluorophore-Induced Plasmonic Current. J. Phys. Chem. C, 124, 5780−5788, 2020.
103. Se-Woong Baek et al., Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nature Energy, 4, 969–976, 2019.
104. Yiming Cao, Alexandros Stavrinadis, Tania Lasanta, David So and Gerasimos Konstantatos, The role of surface passivation for effcient and photostable PbS quantum dot solar cells. Nature Energy, 1:16035, 1–6, 2016.
105. Kevin A. Bush et al., 23.6% efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2, 17009, 2017.
106. Vivian E. Ferry, Jeremy N. Munday, and Harry A. Atwater, Design Considerations for Plasmonic Photovoltaics. Adv. Mater., 22, 4794–4808, 2010.
107. Aliaksandr Hubarevich, Mikita Marus, Weijun Fan, Aliaksandr Smirnov, Hong Wang, Highly Efficient Ultrathin Plasmonic Insulator-Metal-Insulator-Metal Solar Cell. Plasmonics, 13, 141–145, 2018.
108. Mark V. Khenkin et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 5, 35–49, 2020.
109. Jin-Hui Zhong et al., Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure. Nature Communications, 11:1464, 2020. | https://doi.org/10.1038/s41467-020-15232-w.
110. F. Pelayo, Garcıa de Arquer, Agustın Mihi, Dominik Kufer, and Gerasimos Konstantatos, Photoelectric Energy Conversion of Plasmon-Generated Hot Carriers in Metal Insulator Semiconductor Structures. ACS Nano, 7:4, 3581–3588, 2013.
111. Renxing Lin et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 4, 864–873, 2019.
112. Jared S. Price et al., High-concentration planar microtracking photovoltaic system exceeding 30% efficiency. Nature Energy, 2, 17113, 2017.
113. Michael Saliba, Wei Zhang, Victor M. Burlakov, Samuel D. Stranks, Yao Sun, James M. Ball, Michael B. Johnston, Alain Goriely, Ulrich Wiesner, Henry J. Snaith, Plasmonic‐Induced Photon Recycling in Metal Halide Perovskite Solar Cells, Advanced Functional Materials, 25(31), 5038–5046, 2015. https://doi.org/10.1002/adfm.201500669
114. Tokuhisa Kawawaki, Haibin Wang, Takaya Kubo, Koichiro Saito, Jotaro Nakazaki, Hiroshi Segawa, and Tetsu Tatsuma, Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes, ACS Nano, 9, 4, 4165–4172, 2015. https://doi.org/10.1021/acsnano.5b00321
115. Janusz E. Jacak and Witold A. Jacak, Plasmonic Enhancement of Solar Cells Efficiency: Material Dependence in Semiconductor Metallic Surface Nano-Modification, 2018.
1 * Corresponding author: indrani.banerjee@cug.ac.in