Читать книгу Егоїстичний ген - Річард Докінз - Страница 8

3
Безсмертні спіралі

Оглавление

Ми є машинами для виживання, але це «ми» означає не лише людей. Воно охоплює всіх тварин, а також всі рослини, бактерії та віруси. Загальну кількість машин для виживання на землі підрахувати дуже складно – невідома навіть загальна кількість видів. Якщо взяти самих лише комах, то кількість видів, що живуть нині, налічує приблизно три мільйони, хоча кількість окремих індивідів може становити 1 × 1018.

Різні типи машин для виживання дуже відрізняються одні від одних і ззовні, і будовою своїх внутрішніх органів. Восьминіг, наприклад, абсолютно не схожий на мишу, і нікого з них не сплутаєш із дубом. Однак за основним хімічним складом усі вони досить однорідні. Зокрема реплікатори, чиїми носіями вони є (їхні гени), по суті, це молекули, присутні в кожному з нас – від бактерій до слонів. Ми всі є машинами для виживання для одного й того самого різновиду реплікатора – молекул під назвою ДНК, але існує багато різних способів забезпечення життя на землі, і реплікатори створили широкий спектр машин для їхньої експлуатації. Мавпа, наприклад, є машиною, що зберігає гени високо на деревах, риба – машиною, що зберігає їх у воді. Є навіть маленький хробачок, що зберігає гени в німецьких підставках під пивні кухлі. ДНК працює дивовижним чином.

Дотримуючися простого викладу, ми вирішуємо, що сучасні гени, сформовані з ДНК, є майже такими самими, як і перші реплікатори в первісному бульйоні. Можливо, це не цілком так, але наразі не має значення. Вихідні реплікатори могли виглядати як споріднені з ДНК молекули або як інші. Тоді ми вважатимемо, що ДНК, мабуть, захопила їхні машини для виживання на більш пізньому етапі. Якщо це правда, то первинні реплікатори були цілком знищені, бо в сучасних машинах для виживання від них не лишилося й сліду. З огляду на це еволюціоніст А. Дж. Кернс-Сміт запропонував цікаву гіпотезу, що наші предки (перші реплікатори) могли бути аж ніяк не органічними молекулами, а неорганічними кристалами – мінералами, шматочками глини. Є ДНК узурпатором чи ні, сьогодні її керівна роль беззастережна, за умови, як я гіпотетично припускаю в 11-му розділі, що зараз не розпочалося нове захоплення влади.

Молекула ДНК являє собою довгий ланцюг будівельних блоків – невеличких молекул, що називаються нуклеотиди. Так само, як молекули білка є ланцюжками амінокислот, молекули ДНК – це ланцюжки нуклеотидів. Молекула ДНК є надто малою, щоби бути видимою, але оригінальні непрямі методи дозволили встановити її точну форму. Вона складається з пари нуклеотидних ланцюжків, закручених в елегантну спіраль, яку називають «подвійною» або «безсмертною». Нуклеотидні будівельні блоки бувають лише чотирьох типів, назви яких можна скоротити до A, T, Ц і Г. Вони є однаковими в усіх тварин та рослин. Відрізняється лише порядок їхнього з’єднання між собою. Будівельний блок Г людини цілком ідентичний блоку Г слимака. Але послідовність будівельних блоків людини інакша, ніж у слимака. Вона також відрізняється – хоча й менше – від послідовності будь-якої іншої людини (крім особливих випадків однояйцевих близнюків).

Наша ДНК живе в усьому нашому організмі. Вона не сконцентрована в певній конкретній частині тіла, а розподілена між клітинами. Загалом, організм людини складається з 1 × 1015 клітин, і, за поодинокими винятками, що їх можна проігнорувати, кожна з цих клітин містить повну копію ДНК цього організму. ДНК можна вважати збіркою інструкцій з побудови тіла, написаною алфавітом нуклеотидів А, T, Ц, Г. Це схоже на те, немов у кожній кімнаті велетенської будівлі стоїть книжкова шафа з архітектурними планами для всієї будівлі. Ця «книжкова шафа» клітини називається ядром. «Архітектурні плани» у людини налічують 46 томів – у інших видів ця кількість відрізняється. «Томи» ж називаються хромосомами. Під мікроскопом вони нагадують довгі нитки, вздовж яких у певному порядку розташовані гени. Визначити, де закінчується один ген та починається наступний, доволі складно, а іноді й марно. На щастя, як ми побачимо трохи згодом, наразі це не важливо.

Я й далі використовуватиму метафору архітектурних планів, вільно перемішуючи мову метафор з мовою реальності. «Том» буде вживатися поперемінно з «хромосомою». «Сторінка» подекуди підмінятиме «ген», хоча поділ між генами є менш чітким, ніж між сторінками книги. Ця метафора супроводжуватиме нас доволі довго. Коли ж вона нарешті перестане працювати, я запропоную вам інші метафори. До речі, жодного «архітектора» не існує. Інструкції ДНК були зібрані суто в результаті природного добору.

Молекули ДНК роблять дві важливі речі. По-перше, вони реплікують, тобто створюють копії самих себе. Цей процес відбувається безперервно з самої миті зародження життя, і сьогодні молекули ДНК справді чудово з цим справляються. Це зараз ви – доросла людина і складаєтесь із 1 × 1015 клітин, але в момент зачаття ви становили одну-єдину клітину, наділену одним примірником архітектурних планів. Ця клітина поділилася на дві, і кожна з цих двох клітин отримала свою власну копію планів. Подальші поділи збільшили кількість клітин до 4, 8, 16, 32 і так далі до мільярдів. І при кожному поділі плани ДНК копіювалися дуже точно, практично без помилок.

Говорити про подвоєння ДНК – то одне. Але якщо ДНК справді є набором планів для будівництва організму, як ці плани реалізуються на практиці? Як вони втілюються в тканини тіла? Час згадати другу важливу справу ДНК: вона опосередковано контролює виготовлення іншого типу молекул – білка. Гемоглобін, про який ми згадували у минулому розділі, є лише одним прикладом величезного спектра білкових молекул. Закодована в ДНК інформація, написана чотирилітерним нуклеотидним алфавітом, простим механічним способом перекладається іншою абеткою. Це алфавіт амінокислот, яким кодуються молекули білка.

Може здатися, що формування білків дуже далеке від формування організму, але це перший невеличкий крок у потрібному напрямку. Білки не лише складають значну частину фізичної конструкції тіла; вони також здійснюють чутливий контроль усіх хімічних процесів всередині клітини, вибірково вмикаючи та вимикаючи їх у певний час і в певному місці. Щоб пояснити, як саме це, врешті-решт, призводить до розвитку немовляти, ембріологам знадобляться десятки або й сотні років. Але факт лишається фактом. Гени справді опосередковано контролюють побудову організмів, причому вплив є суто однобічним: набуті характеристики не успадковуються. Скільки б знань та мудрості ви не набули за час свого життя, вони аж ніяк не передадуться вашим дітям завдяки генетиці. Кожне нове покоління починається з нуля. Організм використовується генами для збереження їхньої незмінності.

Еволюційна важливість того факту, що гени контролюють ембріональний розвиток, полягає ось у чому: це означає, що гени, принаймні, частково відповідальні за власне виживання в майбутньому, бо цей процес залежить від ефективності організмів, у яких вони живуть та які вони допомогли збудувати. Колись давно природний добір полягав у диференційованому виживанні реплікаторів, що вільно плавали собі у первісному бульйоні. Тепер природний добір віддає перевагу реплікаторам, що добре будують машини для виживання, – генам, що опанували мистецтво контролю ембріонального розвитку. Щодо цього реплікатори є не більш свідомими чи цілеспрямованими, ніж раніше. Ті самі старі процеси автоматичного добору між конкурентними молекулами через їхню довговічність, поширеність, а також точність копіювання все ще тривають всліпу та неухильно, як і у далекому минулому. Гени не мають дару передбачення. Вони не здатні планувати заздалегідь. Гени лише існують (деякі краще за інших), от і все. Але властивості, що визначають довговічність та поширеність генів, вже не такі прості. Геть не такі.

Останнім часом – це десь шістсот мільйонів років – реплікатори досягли значних успіхів у таких технічних рішеннях машин для виживання, як м’язи, серце і очі (виникали кілька разів незалежно одне від одного). А перед тим вони радикально змінили основні особливості свого способу життя як реплікаторів, що слід розуміти, якщо ми збираємося говорити про них далі.

Перш за все, коли мова йде про сучасний реплікатор, мають на увазі його високий колективізм. Машина для виживання – це засіб пересування не для одного, а багато тисяч генів. Створення організму є спільним підприємством, та й ще настільки заплутаним, що розмежувати внесок одного з генів майже неможливо [9]. Один ген впливає на зовсім різні частини тіла, а на певну частину тіла діють багато генів, і ефект дії будь-якого одного гена залежить від взаємодії з багатьма іншими. Деякі гени грають головну роль, контролюючи дію кластера інших генів. За нашою аналогією, будь-яка конкретна сторінка плану містить посилання на багато різних частин будівлі, і кожна сторінка має сенс лише з огляду на перехресні посилання на численні інші сторінки.

Така заплутана взаємозалежність генів може викликати у вас сумнів, навіщо ми взагалі використовуємо слово «ген». Чому б не скористатись якимось збірним іменником на зразок «генного комплексу»? Відповідь полягає в тому, що для решти цілей це справді непогане рішення. Але якщо ми поглянемо на все під іншим кутом зору, матиме сенс вважати генний комплекс сукупністю дискретних реплікаторів або генів. Це пов’язано з явищем статевого розмноження. Статеве розмноження створює ефект перемішування і перетасування генів. Тобто певний організм є лише тимчасовим засобом пересування нетривалої комбінації генів. До того ж комбінація генів, якою є будь-який індивід, може бути короткочасною, та гени, як такі, потенційно напрочуд довговічні. Покоління за поколінням, їхні шляхи увесь час то сходяться, то розходяться. Один ген можна вважати одиницею, що виживає у великій кількості подальших окремих організмів. Саме про це я й говоритиму у цьому розділі. Деякі з моїх найповажніших колег уперто відмовляються погоджуватися із цим аргументом, тому даруйте, що я приділяю йому забагато уваги! Але спершу я маю коротко пояснити факти щодо статевого розмноження.

Трохи вище я казав, що плани будівництва людського тіла викладені в 46-ти томах. Однак це дещо надмірне спрощення. Насправді все значно плутаніше. 46 хромосом складають 23 пари. Отже, в ядрі кожної клітини містяться два альтернативні набори з 23-х томів планів. Назвемо їх томом 1a та 1b, томом 2a та 2b і так до тому 23а і 23b. Певна річ, що ідентифікаційні номери, які я використовую для томів і, пізніше, сторінок, абсолютно довільні.

Кожну хромосому ми цілою й неушкодженою отримуємо від одного з двох наших батьків, в чиїх яєчках чи яєчнику вона була сформована. Томи 1a, 2a, 3а тощо хай надходять від батька. Томи ж 1b, 2b, 3b тощо надходять від матері. На практиці це виглядає дуже складно, але в теорії під мікроскопом можна роздивитися 46 хромосом у будь-якій з ваших клітин, розрізнивши 23 батьківських та 23 материнських.

Парні хромосоми не перебувають увесь свій вік у фізичному контакті з іншими чи навіть поблизу одна від одної. Тоді які ж вони «парні»? Та кожен том, що дається батьком, можна вважати, сторінку за сторінкою, прямою альтернативою конкретного тому, що дається матір’ю. Наприклад, сторінка 6 тому 13а та сторінка 6 тому 13b обидві можуть «стосуватися» кольору очей; от тільки на одній писатиметься «блакитні», а на іншій – «карі».

Іноді ці дві альтернативні сторінки є ідентичними, але в інших випадках, як у нашому прикладі з кольором очей, вони відрізняються. Якщо вони дають суперечливі «рекомендації», тоді як діє організм? По-різному. Іноді одне формулювання превалює над іншими. У щойно наведеному прикладі з кольором очей людина насправді б отримала карі очі: інструкції щодо блакитних очей при побудові тіла були би проігноровані, хоча б не припинилися передаватися майбутнім поколінням. Ген, що ігнорується, називається рецесивним. Його протилежністю є домінантний ген. Ген карих очей є домінантним щодо гена блакитних. Людина отримує блакитні очі, лише якщо обидві копії відповідної сторінки одностайно їх рекомендують. Зазвичай, коли два альтернативні гени не ідентичні, результатом стає певний компроміс – організм будується за якимось проміжним або взагалі зовсім іншим планом.

Коли два гени, на зразок карих і блакитних очей, змагаються за одне і те саме місце на хромосомі, вони називаються алелями один одного. Для нас слово «алель» є синонімом суперника. Уявіть собі томи архітектурних планів у вигляді скорозшивачів, сторінки в яких можна вільно виймати та міняти місцями. Кожен том 13 повинен мати сторінку 6, але між сторінками 5 і 7 можуть бути кілька шостих сторінок. В одній версії йтиметься про блакитні очі, в іншій – про карі, а загалом у популяції можуть бути версії, де передбачені інші кольори, наприклад зелений. Існують чи не шість альтернативних алелей, що у популяції загалом можуть розташовуватися на місці сторінки 6 хромосоми 13. Кожна конкретна людина має лише дві хромосоми тому 13. Отже, на сторінці 6 вона може мати максимум два алелі. Наприклад, блакитноока людина маже мати дві копії одного алеля або будь-які два алелі, вибрані з півдюжини альтернатив, можливих у популяції загалом.

Певна річ, не можна аж ніяк піти та вибрати собі гени з генофонду, доступного для всієї популяції. В певний момент всі гени пов’язані всередині своїх машин для виживання. Наші гени надаються нам при зачатті, і цьому ми ніяк не можемо зарадити. Одначе в тривалій перспективі гени популяції загалом можна вважати генофондом. Тобто, це технічний термін, до якого вдаються генетики. Генофонд є виправданою абстракцією, бо при статевому розмноженні гени перемішуються, хоча й досить обережно. Зокрема, як ми у цьому незабаром пересвідчимося, відбуватиметься щось на зразок вилучення й заміни сторінок та цілих їхніх стосів у скорозшивачах.

Я вже описував звичайний поділ клітини на дві нові, кожна з яких отримує повну копію усіх 46-ти хромосом. Цей звичайний поділ клітин називається мітозом. Але існує інший тип поділу клітин, що називається мейозом. Він відбувається лише під час вироблення статевих клітин: сперматозоїдів або яйцеклітин. Сперматозоїди та яйцеклітини є унікальними серед наших клітин, бо замість 46-ти хромосом вони мають лише 23. Це, певна річ, рівно половина від 46-ти, що зручно для з’єднування при статевому заплідненні, коли створюється новий організм! Мейоз є особливим різновидом поділу клітини, що відбувається лише в яєчках та яєчниках, де клітина з повним подвійним набором із 46-ти хромосом ділиться, формуючи статеві клітини з одинарним набором із 23-х хромосом (для ілюстрації я весь час використовую потрібну кількість для організму людини).

Сперматозоїд із його 23-ма хромосомами утворюється завдяки мейотичному поділові однієї зі звичайних 46-хромосомних клітин у яєчку. Які саме хромосоми закладаються в кожен конкретний сперматозоїд? Дуже важливо, щоби він отримав не просто якісь 23 старі хромосоми: в ньому не мають опинитися дві копії 13-го тому і жодної 17-го тому. Теоретично, індивід може забезпечити один зі своїх сперматозоїдів хромосомами, що походять, скажімо, цілковито від його матері: томами 1b, 2b, 3b і т. д. аж до 23b. У такому маловірогідному випадку дитина, зачата таким сперматозоїдом, успадкувала б половину своїх генів від бабусі з боку батька і жодного від дідуся з боку батька. Але насправді такого загального цільнохромосомного розподілу не відбувається. Реальність значно складніша. Пам’ятайте, що ми уявляємо собі томи (хромосоми) у вигляді скорозшивачів. Відбувається те, що під час формування сперматозоїда певні сторінки або чи не цілі стоси з багатьох сторінок вилучаються і міняються місцями з відповідними стосами альтернативних томів. Таким чином один конкретний сперматозоїд може скласти свій 1-й том, узявши перші 65 сторінок з тому 1a, а з 66-ї сторінки і до самого кінця – з тому 1b. Інші 22 томи цього сперматозоїда можуть бути організовані подібним чином. Тому кожний сперматозоїд індивіда є унікальним, навіть попри те, що всі інші зібрали свої 23 хромосоми з частинок того самого набору з 46-ти хромосом. Яйцеклітини в яєчниках формуються схожим чином і також усі є унікальними.

Реальна механіка цього змішування цілком зрозуміла. Під час виробництва сперматозоїда (або яйцеклітини) частинки кожної батьківської хромосоми фізично від’єднуються від інших та міняються місцями із суто відповідними їм частинками материнської хромосоми. (Не забувайте, що ми маємо на увазі хромосоми, похідні від батька індивіда, що виробляє сперматозоїди, тобто, від дідуся з боку батька дитини, що її, зрештою, зачинають цим сперматозоїдом). Процес обміну ділянками хромосоми називається кросинговером і вельми важливий для цілої теми цієї книги. Він означає, що якби ви вирішили роздивитися під мікроскопом хромосоми свого власного сперматозоїда (чи яйцеклітини, якщо ви – жінка), ви б змарнували час, намагаючись ідентифікувати хромосоми, що походять від вашого батька, і хромосоми, що від вашої матері. Цим вони значно відрізняються від звичайних клітин тіла (див. вище). Будь-яка хромосома у сперматозоїді нагадує ковдру з клаптиків, певну мозаїку з материнських і батьківських генів.

Ось тут метафора сторінки, що її ми використовуємо для опису гена, починає блякнути. В скорозшивач можна вставити, з нього можна вилучити або замінити всю сторінку цілком, але не її частину. Проте генний комплекс є лише довгою низкою нуклеотидів без жодного видимого поділу на окремі сторінки. Звісно, існують особливі символи для ПОЧАТКУ та ЗАКІНЧЕННЯ повідомлення БІЛКОВОГО ЛАНЦЮГА, записаного тою самою чотирилітерною абеткою, що й білкові повідомлення. Між цими двома пунктуаційними позначками закодовані інструкції для створення одного білка. За бажанням, можна визначити окремий ген як послідовність нуклеотидів, що лежить між символом ПОЧАТКУ і КІНЦЯ та кодує один білковий ланцюг. Визначену таким чином одиницю запропонували називати словом цистрон, і дехто використовує його в парі зі словом ген. Але кросинговер не визнає кордонів між цистронами. Розриви можуть виникати і в самих цистронах, а не лише між ними. Це виглядає так, наче архітектурні плани були написані не на сторінках, а на 46-ти сувоях. Цистрони не мають сталої довжини. Єдина можливість визначити, де закінчується один цистрон і починається наступний, – це прочитати символи на сувої, знайшовши позначки КІНЦЯ і ПОЧАТКУ ПОВІДОМЛЕННЯ. Кросинговер виявляється в тому, що з відповідних батьківських та материнських сувоїв вирізаються і міняються місцями певні ділянки, не зважаючи на те, що на них написано.

У назві цієї книги слово «ген» означає не певний цистрон, а щось більш витончене. Моє визначення сподобається не всім, але загальновизнаної характеристики гена не існує. Навіть якби й була, жодне визначення не є непорушним. Ми можемо визначати те чи інше слово на власний розсуд, але за умови, що робитимемо це чітко й однозначно. Визначення, що його хочу навести я, належить Дж. К. Вільямсові [10]. Ген визначається як будь-яка частина хромосомного матеріалу, що потенційно зберігається достатньою кількістю поколінь, щоби стати одиницею природного добору. В попередньому розділі ген називався реплікатором з високою точністю копіювання. Точність копіювання є синонімом довговічності у формі копій, і я називатиму це просто довговічністю. Така дефініція потребує певного обґрунтування.

Яким би не було визначення, ген має становити собою ділянку хромосоми. Річ лише в тім, наскільки вона велика – скільки сувою займає? Уявіть довільну послідовність сусідніх кодових літер на сувої. Назвімо цю послідовність генетичною одиницею. Це може бути послідовність лише з десяти літер всередині одного цистрона, з восьми цистронів, може починатися й закінчуватись у межах цистрона. Вона накладатиметься на інші генетичні одиниці, включатиме менші одиниці, а також формуватиме частину більшої одиниці. Неважливо, яка вона – довга або коротка, для цієї книги вона є тим, що ми називаємо генетичною одиницею. Це лише ділянка хромосоми, жодним чином фізично не відділена від решти хромосоми.

А тепер дещо важливе. Чим коротша генетична одиниця, тим довше – протягом поколінь – вона має шанси прожити. Зокрема, існує менша вірогідність бути розщепленою якимось кросинговером. Вважаймо, що вся хромосома в середньому зазнає одного кросинговеру при кожному утворенні сперматозоїда або яйцеклітини через мейотичний поділ, і цей кросинговер може відбуватися на будь-якій її ділянці. Якщо ми візьмемо дуже велику генетичну одиницю, скажімо, десь як половина довжини хромосоми, то існує 50-відсоткова вірогідність розщеплення цієї одиниці при кожному мейозі. Якщо ж генетична одиниця, що її ми маємо на увазі, складає лише один відсоток від довжини хромосоми, то можна вважати, що вона має лише 1-відсоткову вірогідність розщеплення під час будь-якого мейотичного поділу. Тобто, що очікуватимемо виживання цієї одиниці протягом великої кількості поколінь нащадків індивіда. Один цистрон, швидше за все, складає значно менше за один відсоток довжини хромосоми. Навіть від групи з кількох сусідніх цистронів варто сподіватися виживання протягом багатьох поколінь, перш ніж вона буде розщеплена кросинговером.

Середню тривалість життя генетичної одиниці зручно подати у поколіннях, що їх, зі свого боку, можна перевести в роки. Якщо ми візьмемо за свою умовну генетичну одиницю всю хромосому, її життя триватиме протягом лише одного покоління. Уявімо, що це ваша хромосома 8a, успадкована від вашого батька. Вона з’явилась усередині одного з його яєчок невдовзі перед вашим зачаттям. До того, протягом усієї історії світу, її ніколи не існувало. Вона була створена процесом мейотичного перетасування, злиттям ділянок хромосоми від вашої бабусі з боку батька та вашого дідуся з цього ж боку і розташована всередині певного конкретного сперматозоїда. Тобто, вона унікальна. Цей сперматозоїд – один із кількох мільйонів, частина величезної армади крихітних суден, що усі разом запливли до вашої матері. Цей конкретний сперматозоїд (за умови, що у вас нема двояйцевого близнюка) один з усієї флотилії знайшов гавань в одній з яйцеклітин вашої матері – ось через що ви існуєте. Генетична одиниця, про яку мова, – ваша хромосома 8a, починає реплікуватися разом з усією рештою вашого генетичного матеріалу. Тепер вона існує в дуплікованій формі у всьому вашому організмі. Але, коли ви захочете мати дітей, ця хромосома буде розщеплена при виробництві яйцеклітин (або сперматозоїдів). Її частинки перемішаються з частинками вашої материнської хромосоми 8b. В будь-якій статевій клітині буде створена нова хромосома 8. Можливо, вона стане «кращою» за стару, а, може, й «гіршою», але, якщо не брати до уваги доволі малоймовірні збіги, очевидно іншою, унікальною. Таким чином, тривалість життя хромосоми складає одне покоління.

А як щодо тривалості життя меншої генетичної одиниці, скажімо, 1∕100 довжини вашої хромосоми 8a? Ця одиниця теж походить від вашого батька, але, вірогідно, була створена не в його організмі. Згідно з нашими попередніми роздумами, є 99-відсоткова вірогідність, що він отримав її саме таку від одного зі своїх батьків. Уявімо, що це була його мати, ваша бабуся з боку батька. Отже, знову є 99-відсоткова вірогідність, що вона успадкувала цю одиницю від одного зі своїх батьків. Якщо простежити за походженням будь-якої малої генетичної одиниці аж до її початків, ми врешті натрапимо на її безпосереднього творця. На якомусь певному етапі вона колись була створена всередині яєчка чи яєчника одного з ваших предків.

Дозвольте зайвий раз нагадати, що я використовую слово «створити» у досить специфічному значенні. Менші субодиниці, що складають генетичну одиницю, про яку йде мова, могли існувати вже давно. Наша ж генетична одиниця була створена в певний час саме в тому сенсі, що конкретної схеми субодиниць, які її визначають, досі не існувало. Саме створення могло статися достатньо нещодавно, скажімо, в одного з ваших дідусів. Але якщо ми говоримо про дуже малу генетичну одиницю, вона могла з’явитися у значно давнішого предка, можливо, мавпоподібного, що навіть ще не став людиною. Щобільше, ця мала генетична одиниця всередині вас здатна так само довго проіснувати ще в майбутньому, пройшовши неушкодженою крізь довгий перелік ваших нащадків.

Пам’ятайте також, що нащадки будь-якого індивіда складають не пряму лінію, а розгалужену. Хто б із ваших предків не «створив» конкретну коротку ділянку хромосоми 8а, він чи вона вірогідно мали ще нащадків, окрім вас. Одна з ваших генетичних одиниць може виявитися також у вашого троюрідного брата. Вона може бути у мене, у президента, у вашого собаки, адже ми всі маємо далеких спільних предків, якщо добряче пошукати. Крім того, така сама одиниця могла випадково скомпонуватись незалежним чином кілька разів: з малими одиницями збіг трапляється часто. Але навіть ваш близький родич навряд чи має цілу хромосому, що цілковито ідентична вашій. Чим менша генетична одиниця, тим імовірніше, що її матиме також інша людина. Отже, чимало шансів на те, що вона виникне у вигляді численних копій.

Випадкове об’єднання вже існуючих субодиниць завдяки кросинговеру є звичним способом формування нової генетичної одиниці. Інший спосіб, хоч і вкрай рідкісний, але вельми важливий для еволюції, називається точковою мутацією. По суті, мова йде про помилку, десь так, як неправильно надрукована літера в книзі. Трапляється вона рідко, але, вочевидь, чим довша генетична одиниця, тим більше шансів на те, що вона буде змінена мутацією.

Інший рідкісний вид помилки або мутації, що має важливі довготривалі наслідки, називається інверсією. Частинка хромосоми відділяється від неї з обох боків, обертається у протилежному напрямку та знову стає на місце в такому вигляді. Якщо продовжити колишню аналогію, відбувається певна зміна нумерації сторінок у книзі. Іноді частинки не просто інвертують, а знову приєднуються до хромосоми в якомусь іншому місці або навіть до іншої хромосоми. Це наче перенесення певних сторінок тексту з однієї книги до іншої. Важливість такої помилки полягає в тому, що попри свою катастрофічність, іноді вона призводить до щільного зчеплення частинок генетичного матеріалу, що здатні добре працювати разом. Уявіть, що за рахунок інверсії будуть наближені між собою два цистрони, що мають позитивний вплив лише за одночасної присутності, бо певним чином доповнюють або підсилюють один одного. Тоді природний добір може схилитися на користь сформованої таким чином нової «генетичної одиниці», і вона пошириться в майбутній популяції. Цілком можливо, що комплекси генів роками десь саме так потужно перебудовувались або, за нашою аналогією, «редагувалися».

Один із найяскравіших прикладів цього процесу стосується явища, відомого як мімікрія. Деякі метелики огидні на смак. Зазвичай вони мають яскраве й добре помітне забарвлення, що його птахи сприймають як попередження і уникають їсти таких метеликів. Цим користуються інші види метеликів, що не мають огидного смаку. Вони імітують несмачних, від самого народження нагадуючи їх забарвленням та формою (але не смаком), через що вводять в оману навіть натуралістів, не лише птахів. Птах, що хоч раз скуштував несмачного метелика, схильний уникати всіх комах, що виглядають так само. Це стосується й імітаторів, а тому гени мімікрії легко проходять природний добір. Саме так відбувається еволюція мімікрії.

Існує багато різних видів огидних на смак метеликів, і вони не всі схожі між собою. Імітатор не може нагадувати їх усіх: він має пристосуватися до якогось одного несмачного виду. Загалом будь-який конкретний вид імітатора спеціалізується на вдаванні одного конкретного несмачного виду. Але є й такі види імітаторів, що вдаються до чогось більш дивного: деякі окремі представники певного виду імітують один несмачний вид, а інші – якийсь інший. Якийсь проміжний вид або той, що намагався б імітувати обидва, дуже скоро б з’їли, але такі проміжні види ніколи не народжуються. Так само, як індивіди однозначно визначаються за статтю, метелики імітують якийсь один несмачний вид. Хоча один метелик може імітувати вид А, тоді як його рідний брат імітуватиме вид B.

Схоже, що те, який саме вид імітуватиметься, визначає один-однісінький ген. Але як він визначає всі різнобічні аспекти мімікрії – колір, форму, схему плям, ритм польоту? Відповідь полягає в тому, що один ген у розумінні цистрона, мабуть, на це не здатен. Але через несвідоме і автоматичне «редагування», що досягається завдяки інверсії та іншим випадковим перетасуванням генетичного матеріалу, великий кластер колись окремих генів збирається разом у хромосомі в пов’язану між собою групу. Весь цей кластер поводиться як один ген (по суті, за нашим визначенням, він і є тепер одним геном), до того ж має «алель», що ним насправді є інший кластер. Один кластер містить цистрони, пов’язані з імітацією виду A; інший – пов’язані з імітацією виду B. Кожен кластер настільки рідко розщеплюється кросинговером, що проміжного метелика ви в природі не побачите, хоча при розведенні великої кількості метеликів в лабораторії він трапляється доволі часто.

Я використовую слово «ген» в розумінні генетичної одиниці, що є достатньо малою для існування протягом великої кількості поколінь та широкого розповсюдження у формі багатьох копій. Це визначення не є застиглим і незмінним. Навпаки, воно доволі непевне, наче слова «великий» чи «старий». Чим більша вірогідність того, що хромосома буде розщеплена кросинговером або змінена певними мутаціями, тим менше вона має підстави називатися геном у тому сенсі, в якому я використовую цей термін. Вочевидь, на це заслуговує цистрон, але й більші одиниці також. Десяток цистронів можуть розташовуватись у хромосомі настільки близько один до одного, що нам вони видаються спільною тривкою генетичною одиницею. Хорошим прикладом є кластер, відповідальний за мімікрію в метеликів. Коли цистрони виходять з одного організму та потрапляють в інший, коли сідають на сперматозоїд чи яйцеклітину для подорожі в наступне покоління, тоді можуть виявити на своєму маленькому човнику своїх близьких сусідів із минулої мандрівки, старих товаришів, з якими вони колись здійснили довгу одіссею з організмів далеких предків. Сусідні цистрони у тій самій хромосомі утворюють щільно пов’язане між собою товариство попутників, що вкрай рідко не піднімуться разом на той самий корабель у час мейозу.

Для більшої точності цю книгу слід було б назвати навіть не «Егоїстичний цистрон» чи «Егоїстична хромосома», а «Дещо егоїстична велика ділянка хромосоми та значно егоїстичніша мала ділянка хромосоми». Але така назва не видається вдалою, тому, визначаючи ген як малу ділянку хромосоми, що здатна існувати протягом багатьох поколінь, я й назвав свою книгу «Егоїстичний ген».

Ось ми й опинилися там, де зупинилися у кінці 1-го розділу. Саме там ми пересвідчилися, що егоїзму слід очікувати від будь-якої істоти, що називається основною одиницею природного добору. Ми побачили, що одиницею природного добору вважають або вид, або популяцію чи певну групу всередині виду, або індивід. Я вже казав, що саме ген визнаю фундаментальною одиницею природного добору, а отже, й фундаментальною одиницею егоїзму. До того ж я сформулював таке визначення гена, щоби мати цілковиту рацію!

У своєму найбільш загальному розумінні природний добір означає диференційне виживання об’єктів. Одні з них живуть, а інші помирають. Для того, щоби ця вибіркова смерть не була марною, мають бути дотримані додаткові умови. Кожен об’єкт існує у формі багатьох копій, і принаймні деякі з цих об’єктів потенційно здатні вижити – як копії – протягом значного періоду еволюційного часу. Дрібні генетичні одиниці мають ці властивості, а індивіди, групи та види – ні. Великим досягненням Грегора Менделя була демонстрація того, що спадкові одиниці можна на практиці розглядати як неподільні та незалежні частинки. Сьогодні ми знаємо, що все виглядає не так просто. Навіть цистрон вряди-годи зазнає поділу, а будь-які два гени однієї хромосоми не є цілковито незалежними. Я вважаю ген одиницею, що значно наближається до ідеалу неподільної частинки. Ген не є неподільним, але ділиться рідко. Він або очевидно присутній, або очевидно відсутній в організмі якогось певного індивіда. Ген неушкодженим подорожує від діда до онука, проходячи крізь проміжні покоління без злиття з іншими генами. Якби гени безперервно поєднувалися між собою, природний добір таким, як він сьогодні є, був би неможливий. До речі, це було доведено ще за Дарвіна і змусило його вкрай непокоїтися, бо тоді вважали, що спадковість становить собою процес змішування. Мендель уже був надрукував своє відкриття, і воно могло б заспокоїти Дарвіна. Але, на жаль, Дарвін про нього не довідався. Виглядає так, що цю роботу прочитали вже через багато років після смерті обох учених. Мендель, можливо, сам не збагнув значення своїх відкриттів, інакше написав би про них Дарвіну.

Інша особливість гена полягає в тому, що він не старіє; у віці кількох мільйонів років ген помирає анітрохи не частіше, ніж у віці кількох сотень. Він переходить від одного смертного організму до іншого протягом поколінь, маніпулюючи ними на власний розсуд і заради власних намірів, і полишаючи їх, доки вони не зістаріли й не померли.

Гени безсмертні, або, що точніше, вони визначаються як генетичні сутності, що майже заслуговують на таку характеристику. Ми, індивідуальні машини для виживання у світі, можемо розраховувати прожити ще кілька десятиліть. А от тривалість життя генів має вимірюватися не десятками, а тисячами й мільйонами років.

У видів, що розмножуються статевим шляхом, індивід є надто великою і тимчасовою генетичною одиницею, щоби вважати її важливою одиницею природного добору [11]. Група індивідів є ще більшою одиницею. З погляду генетики, певні організми і групи схожі на хмари в небі або пилові бурі в пустелі. Вони є тимчасовими скупченнями або об’єднаннями і не лишаються стабільними в процесі еволюції. Популяції можуть існувати довго, однак вони постійно змішуються з іншими популяціями, а тому поступово втрачають свою ідентичність і зазнають еволюційної зміни зсередини. Популяція не є достатньо дискретною сутністю, щоби бути одиницею природного добору. Вона неналежно стабільна й унітарна, щоб «добирати» її з інших популяцій.

Певний організм виглядає достатньо дискретним на час свого існування, але, на жаль, чи довго воно триває? Та й ще кожен індивід унікальний. Еволюція за таких умов не відбудеться, бо не можна провести добір між об’єктами, що існують в одному екземплярі! Статеве розмноження – аж ніяк не реплікація. Не лише популяція занечищена іншими популяціями, а й потомство індивіда засмічене його статевим партнером. Ваші діти вами є лише наполовину, ваші онуки є вами лише на чверть. Через кілька поколінь щонайбільше, на що ви можете сподіватися, це велика кількість нащадків, кожен з яких матиме лише крихітну часточку вас (декілька генів), хоч і носитиме ваше прізвище.

Індивіди не є чимось постійним, вони минущі. Хромосоми теж ідуть у забуття, неначе карти після відбою. Але при тасуванні картам нічого не стається. Карти – це гени. Гени не знищуються кросинговером, вони лише змінюють партнерів і рухаються далі. Ще й як рухаються! Бо це їхня робота. Вони – реплікатори, а ми – їхні машини для виживання. Коли ми виконаємо свій обов’язок, нас лишать. Але гени невід’ємні від геологічного часу: вони вічні.

Гени вічні, наче діаманти, але дещо інакше. Окремий кристал діаманта існує як незмінна структура атомів, а молекули ДНК такими не є. Життя будь-якої фізичної молекули ДНК доволі коротке – десь кілька місяців і аж ніяк не більше за життя людини. Але життя молекули ДНК теоретично може тривати у своїх копіях протягом сотень мільйонів років. До того ж, як і давні реплікатори в первісному бульйоні, копії конкретного гена можуть поширюватися по всьому світі. Різниця полягає в тому, що всі сучасні версії охайно запаковані в організми машин для виживання.

Отже, потенційна практично безсмертність гена у формі копій є його визначальною особливістю. Для певних потреб доречно визначати ген як окремий цистрон, але з погляду еволюційної теорії це визначення потрібно поглибити. Це занурення залежить від мети визначення. Ми хочемо знайти практичну одиницю природного добору. Задля цього ми спершу ідентифікуємо властивості, що їх повинна мати успішна одиниця природного добору. У попередньому розділі мова йшла про довговічність, поширеність, а також точність копіювання. Згодом ми лише визначаємо ген як найбільшу сутність, що (принаймні, потенційно) має ці властивості. Ген є довговічним реплікатором, що існує у формі багатьох дуплікованих копій. Він не є безмежно довговічним. Та й діамант не є абсолютно вічним і цистрон може бути розщепленим надвоє кросинговером. Ген визначається як ділянка хромосоми, достатньо коротка, щоби він існував, потенційно, достатньо довго для функціонування як важлива одиниця природного добору.

Але скільки це «достатньо довго»? Певної і швидкої відповіді немає. Це залежатиме від сили «тиску» природного добору. Тобто, від того, наскільки більша вірогідність загибелі «поганої» генетичної одиниці, а не її «хорошого» алеля. Це питання кількісної характеристики, що варіюватиметься від прикладу до прикладу. Найбільша практична одиниця природного добору – ген – зазвичай буде знаходитись десь посередині між цистроном та хромосомою.

Його потенційне безсмертя робить ген придатним кандидатом на провідну одиницю природного добору. Але спершу розгляньмо слово «потенційне». Ген може жити мільйони років, але багато нових генів не живуть довше за своє перше покоління. Лише деяким це вдається, почасти через щасливий збіг обставин, але переважно завдяки потрібним умінням, що передбачає створення машин для виживання. Вони впливають на ембріональний розвиток усіх подальших організмів, в яких опиняються, завдяки цьому організм отримує більше шансів на виживання і розмноження, ніж під впливом конкурентного гена (алеля). Наприклад, «хороший» ген може забезпечити своє виживання, наділяючи організми довгими ногами, що дають можливість цим організмам утекти від хижаків. Це конкретний приклад, а не якийсь універсальний. Бо довгі ноги, зрештою, це не завжди добре. Кротові вони б лише заважали. Замість того, щоби грузнути в деталях, чи не краще поміркувати про якісь універсальні властивості, що їх можна було б очікувати від усіх хороших (тобто, довговічних) генів? І навпаки, які властивості чітко визначають ген як «поганий», недовговічний? Може існувати декілька таких універсальних властивостей, але є одна, що має особливий стосунок до цієї книги: на генному рівні альтруїзм має бути поганим, а егоїзм – добрим. Це невблаганно випливає з нашого визначення альтруїзму та егоїзму. Гени безпосередньо конкурують за виживання зі своїми алелями, оскільки ті прагнуть посісти в генофонді їхнє місце у хромосомах майбутніх поколінь. Будь-який ген, що поводиться таким чином для збільшення власних шансів вижити в генофонді за рахунок своїх алелів, за визначенням (тавтологія) прагнутиме вижити. Ген є провідною одиницею егоїзму.

От ми й з’ясували суть цього розділу. Але лишилося розглянути деякі складні моменти та приховані припущення. Про перший складний момент я вже побіжно згадував. Якими б незалежними і вільними не були гени у своїй мандрівці крізь покоління, вони аж ніяк не є вільними та незалежними агентами контролю ембріонального розвитку. Вони заплутано і вкрай непросто співпрацюють та взаємодіють не лише між собою, але й зі своїм зовнішнім середовищем. Вирази на зразок «ген довгих ніг» або «ген альтруїстичної поведінки» є зручними фігурами мови, але важливо пам’ятати, що вони означають. Не існує такого гена, що сам-один створює ногу, довгу чи коротку. Створення ноги є кооперативним підприємством, де задіяно багато генів. Впливи зовнішнього середовища також необхідні: зрештою, ноги створюються з їжі! Проте цілком може виявитися один такий ген, що за інших однакових умов здатен зробити ноги довшими, ніж вони були би під впливом його алеля.

Для аналогії візьмемо вплив добрива, наприклад, селітри, на ріст пшениці. Всі знають, що завдяки селітрі пшениця росте краще, ніж без неї. Але ніхто не наважиться стверджувати, що селітра самотужки спроможна створити пшеницю. Вочевидь, необхідні також насіння, ґрунт, сонце, вода та різноманітні мінерали. Та навіть якщо всі ці фактори незмінні (хай із варіаціями в певних межах), додавання селітри покращує ріст пшениці. Те саме бачимо, коли розглянемо вплив певних генів на розвиток ембріона. Ембріональний розвиток контролюється настільки складною мережею відносин, що краще не ламати над ним голову. І жоден фактор генетики чи середовища не можна вважати єдиною «причиною» розвитку будь-якої частини тіла немовляти. Всі ці частини мають майже нескінченну кількість першопричин. Але відмінності між немовлятами, наприклад, у довжині ніг, можна легко віднести до однієї чи декількох простих попередніх відмінностей в умовах середовища чи в генах. Саме відмінності мають значення в конкурентній боротьбі за виживання, а для еволюції мають значення генетично контрольовані відмінності.

Для гена саме алелі є його найзапеклішими конкурентами, а інші гени є лише частиною середовища, що аналогічна до температури, їжі, хижаків або партнерів. Вплив гена залежить від його середовища, а в нього залучені інші гени. Іноді ген виявляє свій певний вплив, бо поруч саме цей ген, і абсолютно інакше реагуватиме, якщо існує інший набір супутніх генів. Весь набір генів в організмі створює певний генетичний клімат або тло, що змінює і впливає на результати дії будь-якого конкретного гена.

Виглядає на те, що перед нами постає парадокс. Якщо створення немовляти є аж таким складним кооперативним підприємством, де кожен ген потребує кілька тисяч супутніх генів для виконання свого завдання, яким чином це узгоджується з моїм уявленням неподільних генів, що, наче безсмертні сарни, перестрибують з організму в організм крізь віки: вільних, непідвладних і користолюбних чинників життя? Невже так уявляти було дурницею? Аж ніяк. Можливо, я й зайшов трохи задалеко, але жодних дурниць не говорив і ніякого парадоксу насправді не існує. Це можна підтвердити за допомогою іншої аналогії.

Один весляр самотужки не здатен виграти змагання з веслування між Оксфордом і Кембриджем. Для цього він потребує вісім колег. Кожен із них має свою спеціалізацію і завжди сидить у конкретній частині човна – на носі, кормі чи посередині. Веслування – справа колективна, але деякі спортсмени можуть бути кращими за інших. Уявімо, що тренер має набрати ідеальну команду з багатьох кандидатів, деякі з яких спеціалізуються на носовій позиції, інші – на кормовій тощо. І він відбиратиме так: кожного дня зводитиме разом три нові команди, що пробують свої сили, довільно перетасовуючи кандидатів на кожну позицію, та наказуватиме цим трьом командам змагатися одна з одною. Через кілька тижнів він з’ясує, що до команд-переможців дуже часто потрапляють ті самі спортсмени. Отже, він має справу з чудовими веслярами. Інші кандидати щоразу опинятимуться у повільніших командах, і їм зрештою відмовлять. Але навіть найкращий весляр може виявитися членом повільної команди або через низький рівень інших, або через несприятливі обставини – скажімо, сильний зустрічний вітер. Найкращі спортсмени опиняються в човні-переможці таки не завжди.

Веслярі – це гени. Конкуренти за кожну позицію в човні – це алелі, потенційно здатні посісти те саме місце уздовж хромосоми. Веслування легко зіставляється зі створенням організму, здатного вижити. А вітер – це зовнішнє середовище. А от велика кількість альтернативних кандидатів – генофонд. Коли мова йде про виживання певного організму, всі його гени перебувають в одному човні. Багато хороших генів потрапляють до поганого товариства, згодом з’ясувавши, що ділять організм зі смертельним геном, що руйнує цей організм іще в дитинстві. Так хороший ген буде знищений разом із рештою. Але йдеться лише про один організм, а репліки того самого хорошого гена живуть також в інших організмах, де смертельного гена нема. Відтак багато копій хороших генів зникають через дію руйнівних генів, інші гинуть через прикрі несподіванки, наприклад, в організм, де вони перебувають, влучає блискавка. Але несподіванки, щасливі чи нещасливі, стаються випадково, а ген, що постійно опиняється на боці переможених, не лише нещасливий – це таки поганий ген.

Однією з властивостей хорошого весляра є талант до командної роботи, здатність пристосуватися до співробітництва з рештою команди. Цей хист може бути не менш важливим за сильні м’язи. Як ми пересвідчилися з метеликами, природний добір може несвідомо «редагувати» генний комплекс завдяки інверсії та іншим значним рухам ділянок хромосоми, таким чином зводячи гени, що чудово співпрацюють разом, у щільно сполучувані групи. Та існує також інше рішення для того, аби гени, фізично не пов’язані між собою жодним чином, добирати за взаємною сумісністю. Якщо ген добре співпрацює з більшістю генів, що частіше трапляються в подальших організмах, тобто рештою генофонду, він матиме перевагу.

Наприклад, для ефективного хижака бажано мати певні характеристики, до яких належать гострі різці, пристосований для перетравлення м’яса кишківник тощо. А от ефективний травоїдний потребує пласких жувальних зубів і значно довшого кишківника з іншою хімією перетравлення. В генофонді травоїдних будь-який новий ген, що приніс би своїм носіям гострі м’ясоїдні зуби, не був би особливо успішним. І не лише тому, що поїдання м’яса є загалом поганою ідеєю, а через те, що не можна ефективно харчуватися м’ясом, не маючи також належного кишківника та всіх інших властивостей хижаків. Гени гострих м’ясоїдних зубів аж ніяк не є поганими. Вони недоречні лише для генофонду, де домінують гени травоїдного способу життя.

Це напрочуд делікатна і складна ідея. Вона складна тому, що «середовище» гена переважно складається з інших генів, кожен з яких добирається з огляду на здатність до співпраці з його середовищем, що складається з інших генів. Використаємо аналогію, спроможну розтлумачити цей важливий момент, що береться не з повсякденного досвіду. Вона з людської «теорії гри», представленої у 5-му розділі, де йдеться про агресивне суперництво між деякими тваринами. Тому я відсуну розгляд цього моменту аж до потрібного розділу і натомість вертаюся до головної думки саме цього розділу. Вона в тому, що основною одиницею природного добору краще за все вважати не вид, популяцію чи індивід, а маленьку одиницю генетичного матеріалу, що її зручно називати геном. Наріжним каменем цього аргументу, про що вже йшла мова, було припущення про його потенційне безсмертя, а от індивіди і решта вищих одиниць є минущими. Це припущення спирається на дві підвалини: факт статевого розмноження і кросинговеру, а ще смертності індивідів. Вони є безсумнівними. Однак варто поставити запитання, чому вони безсумнівні. Чому ми й більшість інших машин для виживання практикують статеве розмноження? Чому наші хромосоми підпадають під кросинговер? Зрештою, чому ми не живемо вічно?

З’ясування того, чому ми помираємо від старості, є доволі складним, а його деталі виходять за межі цієї книги. Крім конкретних причин помирання існують декілька більш загальних. Наприклад, згідно з однієї теорією, згасання від старості стається через накопичення згубних помилок копіювання, а також інших видів пошкодження генів, що відбуваються протягом життя індивіда. Інша теорія, яка належить серові Пітеру Медавару, є яскравим прикладом еволюційного мислення з допомогою термінів генного добору [12]. Перш за все, Медавар відмовляється від традиційних аргументів, таких як: «Смерть літніх індивідів є актом альтруїзму стосовно решти виду, бо, якби вони лишалися, уже надто немічні для розмноження, то б захаращували світ без жодної доброї мети». Медавар наголошує, що такі аргументи водять нас за носа, бо змушують перейматися, чи старі тварини не занадто немічні для розмноження. Також це пояснення наївне щодо групового чи видового добору, хоча його й можна сформулювати більш поважно. Власне, теорія Медавара пропонує блискучу аргументацію. Ми можемо підійти до неї таким чином.

Ми вже порушували тему найбільш загальних властивостей «хорошого» гена і вирішили, що однією з них є «егоїзм». Але іншою властивістю, що нею володіють успішні гени, є тенденція відтерміновувати смерть своїх машин для виживання, принаймні поки не відбудеться розмноження. Певна річ, деякі ваші кузени і двоюрідні дідусі померли в дитинстві, але ж ніхто з ваших предків. Предки не помирають дітьми!

Ген, що змушує своїх власників помирати, називається летальним. Напівлетальний ген має певний виснажливий вплив, збільшуючи вірогідність смерті від інших причин. Будь-який ген виявляє свій максимальний вплив на організми на певному етапі життя, тому летальні чи напівлетальні не є винятками. Вплив більшості генів відбувається під час ембріонального розвитку, а інші – в дитинстві, юності, зрілості чи літньому віці. (Зверніть увагу, що гусінь та метелик, на якого вона перетворюється, мають однаковий набір генів.) Очевидно, що летальні гени мають тенденцію видалятися з генофонду. Але не менш очевидно, що летальні гени пізньої дії в генофонді більш стабільні, ніж ранньої дії. Ген, що є летальним у старшому організмі, однак може бути успішним у генофонді за умови, що його летальний вплив не виявлятиметься, доки цей організм хоч якось не розмножиться. Наприклад, ген, завдяки якому в старих організмах розвинеться рак, може бути переданий численним нащадкам, бо індивіди розмножуватимуться до того, як захворіють на рак. А от ген, через який на рак хворіють молоді організми, не передаватиметься великій кількості нащадків; а ген, через який на рак хворіють діти, не передаватиметься взагалі нікому. Отже, згідно з такою теорією, старече згасання є лише побічним продуктом накопичення в генофонді летальних і напівлетальних генів пізньої дії, що їм надається можливість прослизнути крізь тенета природного добору лише тому, що вони починають діяти пізно.

Медавар сам акцентує на тому аспекті, що добір сприяє тим генам, що відтерміновують дії летальних генів, а також тим, що прискорюють дії хороших генів. Цілком можливо, що сама суть еволюції полягає в генетично контрольованих змінах часу початку активності генів.

Важливо зазначити, що ця теорія не потребує попередніх припущень того, що розмноження відбувається лише в певному віці. Беручи за основу твердження, що всі індивіди однаково вірогідно можуть мати дитину в будь-якому віці, теорія Медавара передбачає швидке накопичення в генофонді згубних генів пізньої дії, а тенденція до занепадання розмноження в старшому віці постає з як її вторинний наслідок.

А тепер невеличкий відступ. Однією з чудових властивостей цієї теорії є те, що вона спонукає нас на деякі цікаві роздуми. Наприклад, якби ми захотіли збільшити тривалість людського життя, для цього є два способи. По-перше, можна заборонити мати дітей, наприклад, до сорока років. Через декілька століть цей мінімальний віковий ценз збільшився б до п’ятдесяти років тощо. Тобто, завдяки таким маніпуляціям вдалося б суттєво, аж до кількох століть, продовжити людський вік. От тільки я не уявляю, хто б узявся запровадити таку політику.

По-друге, можна спробувати «обдурити» гени, запевнивши їх, що організм, в якому вони перебувають, молодший, ніж є насправді. На практиці це б означало визначити зміни внутрішнього хімічного середовища організму, що відбуваються під час старіння. Будь-яка з них може виявитись «ключем», що «запускає» летальні гени пізньої дії. Імітуючи загальні хімічні властивості молодого організму, можливо, вдалося б запобігти активізації згубних генів пізньої дії. Хоча самі хімічні сигнали старшого віку не обов’язково мають бути згубними в звичному сенсі. Уявімо, що, наприклад, речовина S раптом виявилася більше сконцентрованою в організмах старших індивідів, ніж молодих. Сама вона може бути доволі нешкідливою – якимось компонентом їжі, що з часом накопичується в організмі. Але будь-який ген, що виявляє згубний вплив у присутності S, але корисний в інших умовах, автоматично добиратиметься в генофонд і фактично стане геном смерті від старості. Зарадити цьому могло би саме вилучення S з організму.

Революційним у цій ідеї є розуміння, що речовина S є лише «ярликом» старості. Будь-який лікар, зауваживши, що високі концентрації S зазвичай призводять до смерті, сприйняв би S за різновид отрути і узявся б шукати зв’язок між нею і дисфункцією організму. Але в нашому гіпотетичному випадку він даремно змарнував би свій час!

Може також існувати певна речовина Y, «ярлик» молодості в тому сенсі, що більше сконцентрована в молодих організмах, ніж у старих. Тому може відбуватися добір генів, що виявлятимуть позитивний вплив за присутності Y і згубний за її відсутності. Не маючи жодної можливості визначити, що це за S або Y (таких речовин може бути чимало), ми здатні зробити лише загальне передбачення: що краще ми імітуватимемо в старому організмі властивості молодого, навіть дещо загальні на перший погляд, тоді цей літній організм довше житиме.

Нагадаю, що це лише роздуми, базовані на теорії Медавара. Хоча вона, зрештою, не позбавлена логіки, однак це не дає підстави вважати її універсальним поясненням будь-якого конкретного прикладу старечого згасання. Для нас зараз важливо те, що погляд на еволюцію з точки зору генного добору не має проблем із поясненням тенденції індивідів до смерті в старому віці. В межах цієї теорії припущення про смертність індивідів, яке лежить в основі наших роздумів у цьому розділі, є виправданим.

Інше припущення, що його я лише ледь зачепив, про існування статевого розмноження і кросинговеру, пояснити складніше. Кросинговер відбувається не завжди. У самців дрозофіли його немає. Існує також ген, що пригнічує кросинговер у самиць дрозофіли. Якби ми збиралися вивести популяцію мух, де цей ген був би у всіх, основною неподільною одиницею природного добору стала би хромосома в «хромосомному фонді». Тобто, якщо вперто дотримуватися цього пояснення, одним «геном» слід було би вважати всю хромосому.

Зрештою, існують альтернативи і для статевого розмноження. Самиці попелиць можуть без участі самців давати живе потомство жіночої статі, кожен з яких матиме всі гени своєї матері. (До речі, ембріон у «лоні» матері може мати ще менший ембріон у власному лоні. Тому самиця попелиць здатна народити дочку та внучку одночасно, і обидві будуть еквівалентами її власним однояйцевим близнюкам.) Багато рослин розмножуються вегетативно, випускаючи бічні пагони. Тоді нам краще говорити радше про ріст, а не розмноження; але, зрештою, різниця між ростом та нестатевим розмноженням незначна, позаяк обидва процеси відбуваються завдяки простому мітотичному поділові клітин. Іноді рослини, що виникли завдяки вегетативному розмноженню, від’єднуються від «батьків». В інших випадках, наприклад, береста, бічні пагони не від’єднуються. По суті, весь берестняк можна вважати єдиним індивідом.

Отже, питання постає таким чином: якщо попелиці та берести цього не роблять, чому решта з нас докладає значних зусиль для змішування своїх генів з генами когось іншого, щоби мати дитину? Це виглядає дещо дивним. Навіщо взагалі з’явилося статеве розмноження, це химерне відхилення від прямої реплікації? Що в ньому хорошого? [13]

Еволюціоністові відповісти на це запитання надзвичайно складно. Найбільш серйозні спроби запропонувати відповідь залучають непрості математичні розрахунки. Щиро кажучи, я хочу уникнути їх, розглянувши лише один момент. Річ у тім, що науковці, коли беруться пояснювати еволюцію статевого розмноження, дотримуються переконання, що індивід прагне максимізувати кількість своїх генів, здатних виживати. Із такого погляду статеве розмноження видається парадоксальним, бо є «неефективним» способом поширення генів індивіда: кожна дитина має лише 50 % його генів, бо інші 50 % надаються його статевим партнером. Якби самиця народжувала дітей як попелиця, вони були б її точними репліками і вона передавала би в організмі кожної дитини наступним поколінням 100 % своїх генів. Цей очевидний парадокс змусив деяких науковців визнати ідею групового добору, бо на груповому рівні переваги статевого розмноження зрозуміти значно легше. Влучно сказав про це В. Ф. Бодмер, що статеве розмноження «сприяє накопиченню в одному індивіді корисних мутацій, що виникають окремо у різних індивідів».

Проте цей парадокс виглядатиме менш неймовірним, якщо дотримуватися запропонованої аргументації книги і вважати індивід машиною для виживання, що її створила недовгочасна конфедерація довготривалих генів. Тоді власне «ефективність» з погляду індивіда видаватиметься несуттєвою. Статеве або нестатеве розмноження розглядатиметься як ознака, що контролюється лише одним геном, так само як блакитні чи карі очі. Ген статевого розмноження маніпулює всіма іншими генами заради своїх власних егоїстичних цілей. Так само робить і ген кросинговеру. Є навіть гени (так звані мутатори), що маніпулюють рівнем помилок копіювання в інших генах. Помилка копіювання, як ми пересвідчилися, несприятлива для самого гена. Але якщо вона йде на користь егоїстичному мутатору, що її спричинює, цей мутатор може поширитись у генофонді. Так само і якщо кросинговер іде на користь гена кросинговеру, це є достатнім поясненням існування кросинговеру. І якщо статеве (на противагу нестатевому) розмноження іде на користь гена статевого розмноження, це є достатнім поясненням існування статевого розмноження. Чи дає воно користь усім іншим генам цього індивіда чи ні, не так важливо. Зрештою, з позиції егоїстичного гена статеве розмноження не є аж таким дивовижним явищем.

Такі міркування здатні завести до замкненого кола, бо саме існування статевого розмноження є передумовою для чималої кількості роздумів, що підштовхують до сприйняття гена як одиниці добору. На мою думку, у це коло можна не потрапити, але ця книга не є місцем для розгляду подібних питань. Статеве розмноження існує. Це доконаний факт. Саме внаслідок статевого розмноження і кросинговеру мала генетична одиниця (ген) може вважатись найбільш близькою до фундаментального, незалежного фактора еволюції.

Статеве розмноження – не єдиний очевидний парадокс, що виглядатиме дещо зрозумілішим за умови, що ми оберемо позицію егоїстичного гена. Наприклад, виявляється, що кількість ДНК в організмах є більшою, ніж їм потрібно: значна частина ДНК ніколи не перетворюється на білок. З позиції певного організму це виглядає дивовижним. Якщо «метою» ДНК є нагляд за створенням організмів, то дивною видаватиметься велика кількість ДНК, що цим не займається. Біологи сушать голови, намагаючись збагнути, яку корисну мету має ця буцімто зайва ДНК. Але з позиції самих егоїстичних генів жодного парадоксу не існує. Справжньою «метою» ДНК є саме лише виживання. Найпростіший спосіб пояснити зайву ДНК – це припустити, що вона є певним паразитом або, у найкращому разі, нешкідливим, хоч і непотрібним пасажиром, що їде автостопом у машині для виживання, створеній іншою ДНК [14].

Дехто проти такого надмірно геноцентричного, на їхню думку, погляду на еволюцію. Бо ж організми або живуть, або помирають з усіма своїми генами. Сподіваюся, у цьому розділі я достатньо виклав аргументів, щоби довести, що насправді між ними не виникає жодних протиріч. Бо так само, як змагання виграють чи програють човни, а не веслярі, живуть і помирають справді індивіди, тому природний добір майже завжди виявляється безпосередньо на рівні індивідів. Але довготривалі наслідки невипадкової смерті і репродуктивного успіху індивіда виявляються у формі зміни частот генів у генофонді. З деякими застереженнями можна сказати, що генофонд має для сучасних реплікаторів ту саму роль, що й колись первісний бульйон для перших реплікаторів. Статеве розмноження і хромосомний кросинговер мають ефект збереження рідкого стану сучасного еквіваленту цього бульйону. Завдяки їм генофонд постійно добре перемішується, а гени частково перетасовуються. Еволюція – це процес, завдяки якому одних генів у генофонді стає більше, а інших менше. Добре було навчитися кожного разу, намагаючись пояснити еволюцію певних характеристик, таких як альтруїстична поведінка, питати самих себе: «А який вплив ця характеристика має на частоти генів у генофонді?» Часом мова генів виглядає дещо нудною, тому для стислого і виразного викладу доводиться вживати метафори. Але до них завжди слід ставитися дещо скептично, щоби за потреби знову перекласти їх мовою генів.

З огляду на ген, генофонд є лише новим різновидом бульйону, де минає його життя. Змінилося те, що нині життя гена триває у співпраці з послідовними групами товаришів, що беруться з генофонду для створення щоразу іншої смертної машини для виживання. Саме про ці машини виживання та сенс, що вкладається в слова про те, що гени контролюють їхню поведінку, йтиме мова у наступному розділі.

9

Тут, а також на сторінках 145–148, наведена моя відповідь критикам генетичного «атомізму». У буквальному значенні слова, це навіть не відповідь, а радше гра на випередження, оскільки критика з’явиться пізніше! Шкода, що доведеться процитувати самого себе настільки повно, але мене непокоїть думка, що потрібні місця з «Егоїстичного гена» можна випадково пропустити! Наприклад, у розділі «Турботливі групи та егоїстичні гени» (книги «Великий палець панди») С. Дж. Гулд стверджує:

Немає жодних генів таких чітко виражених морфологічних ознак, як ваша ліва колінна чашечка чи ваш ніготь. Організми не можна розкласти на частини, кожна з яких створена окремим геном. У створенні більшості частин організму задіяні сотні генів…

Гулд написав це як критику «Егоїстичного гена». А тепер подивіться на мої точні слова (с. 62):

Створення організму є спільним підприємством, та й ще настільки заплутаним, що розмежувати внесок одного з генів майже неможливо. Один ген впливає на зовсім різні частини тіла, а на певну частину тіла діють багато генів, і ефект дії будь-якого одного гена залежить від взаємодії з багатьма іншими.

І ще раз (с. 80):

Якими б незалежними і вільними не були гени у своїй мандрівці крізь покоління, вони аж ніяк не є вільними та незалежними агентами контролю ембріонального розвитку. Вони заплутано і вкрай непросто співпрацюють та взаємодіють не лише між собою, але й зі своїм зовнішнім середовищем. Вирази на зразок «ген довгих ніг» або «ген альтруїстичної поведінки» є зручними фігурами мови, але важливо пам’ятати, що вони означають. Не існує такого гена, що сам-один створює ногу, довгу чи коротку. Створення ноги є кооперативним підприємством, де задіяно багато генів. Впливи зовнішнього середовища також необхідні: зрештою, ноги створюються з їжі! Проте цілком може виявитися один такий ген, що за інших однакових умов здатен зробити ноги довшими, ніж вони були би під впливом його алеля.

Я розвинув цю думку в наступному параграфі за допомогою аналогії з впливом добрива на ріст пшениці. Дуже схоже на те, що Гулд заздалегідь був настільки впевненим у моєму наївному атомізмі, що пропустив великі фрагменти, де я висловив ту саму думку про взаємодію, на якій він пізніше наполягав.

Гулд продовжує:

Докінзу знадобиться ще одна метафора: генів, що проводять збори, створюють союзи, демонструють шанобливе ставлення до можливості приєднатись до якогось пакту, оцінюють можливі середовища.

У своїй аналогії з веслуванням (с. 145–147) я вже зробив саме те, що пізніше рекомендував Гулд. Подивіться на цей уривок, і ви також побачите, чому Гулд, хоча ми з ним багато в чому згодні, неправий, стверджуючи, що природний добір «приймає або відхиляє цілі організми, бо набори частин, які взаємодіють між собою складним чином, дають переваги». Справжнє пояснення «кооперативності» генів є таким:

Гени добираються не тому, що вони «гарні» самі по собі, а тому, що добре працюють порівняно з іншими генами у генофонді. Такий ген має бути сумісним та неконкурентним з іншими генами, з якими йому доводиться ділити тривалу послідовність організмів. (с. 145)

Більш повну відповідь на критику генетичного атомізму я дав у книзі «Розширений фенотип».

10

Точні слова Вільямса в книзі «Адаптація та природний добір» є такими:

Я використовую термін «ген» у значенні «те, що розділяється та рекомбінує з істотною частотою»…Ген можна визначити як будь-яку спадкову інформацію, для якої існує сприятливе або несприятливе зміщення добору, що від кількох до багатьох разів перевищує швидкість її внутрішньої зміни.

Сьогодні книга Вільямса зазвичай (причому заслужено) вважається класичною і користується повагою і «соціобіологів», і критиків соціобіології. Гадаю, цілком зрозуміло, що Вільямс ніколи не вважав, що обстоює в своєму «генному селекціонізмі» щось нове чи революційне, як не робив цього і я в 1976 році. Ми обидва вважали, що просто заново стверджуємо фундаментальний принцип Фішера, Холдейна та Райта – батьків-засновників «неодарвінізму» 1930-х. Тим не менш, мабуть, через наші безкомпромісні висловлювання, дехто, зокрема сам Сьюелл Райт, не згоджувався з нашим поглядом, що «одиницею добору є ген». Основний їхній аргумент полягав у тому, що природний добір розрізняє організми, а не гени всередині них. Моя відповідь на зауваження Райта та інших представлена в книзі «Розширений фенотип». Найсвіжіші думки Вільямса щодо гена як одиниці добору, викладені в його статті «Захист редукціонізму в еволюційній біології», і вони, як завжди, гострі. Деякі філософи, наприклад, Д. Л. Галл, К. Стерельни та П. Кітчер, а також M. Гампе та С. Р. Морган, теж нещодавно зробили корисний внесок у з’ясовування питання «одиниць добору». На жаль, є й інші філософи, які все переплутали.

11

Відтак за Вільямсом, розмірковуючи про те, що окремий організм не може відігравати ролі реплікатора в природному доборі, я зосередився на фрагментуючих ефектах мейозу. Тепер я бачу, що це була лише половина історії. Інша половина викладена в книзі «Розширений фенотип», а також у моїй статті «Реплікатори та носії». Якби вся справа була у фрагментуючих ефектах мейозу, то організм із нестатевим розмноженням, на кшталт самиці паличника, був би справжнім реплікатором (певним чином. як величезний геном). Але якщо паличник якось змінюється – скажімо, втрачає ніжку – ця переміна не передається майбутнім поколінням. Чи йдеться про статеве розмноження чи нестатеве, майбутнім поколінням передаються лише гени. Тому справжніми реплікаторами є саме гени. Що стосується самиці паличника з нестатевим розмноженням реплікатором є весь геном (набір усіх її генів). Сам паличник таким не є. Організм паличника не виливають з форми як репліку організму попереднього покоління. В будь-якому конкретному поколінні організм заново виростає з яйця під керівництвом його генома, що саме є реплікою генома попереднього покоління.

Усі друковані копії цієї книги виглядатимуть абсолютно однаково. Вони будуть репліками, але не реплікаторами. Вони будуть репліками не тому, що копіюють одна одну, а тому, що всі копіюють ті самі друкарські форми. Вони не утворюють родовід копій, де одні книги є предками інших. Родовід копій існував би, якби ми відксерили певну сторінку книги, потім відксерили ксерокопію, тоді відксерили ксерокопію ксерокопії і т. д. У такому родоводі сторінок справді виникли би відносини між предками та нащадками. Однак якийсь новий дефект, що з’явився би десь посеред серії, став би спільним для нащадків, але аж ніяк не для предків. Серія предків та нащадків такого типу має потенціал для еволюції.

На перший погляд, послідовні покоління організмів паличника, здається, складають певний родовід реплік. Але якщо експериментально змінити хоча б одну ланку цього родоводу (наприклад, відірвати ніжку), ця зміна не передається наступним поколінням. Натомість, якщо експериментально змінити одну ланку родоводу геномів (наприклад, рентгенівським опроміненням), ця зміна передасться наступним поколінням. Саме це, а не фрагментуючі ефекти мейозу, стають основною підставою вважати, що окремий організм не є «одиницею добору» – не справжній реплікатор. Це один із найважливіших наслідків усіма визнаного факту, що ламарківська теорія спадковості є хибною.

12

Я вже отримав на горіхи (звісно, не від самого Вільямса і навіть не з його відома) за те, що приписав цю теорію старіння П. Б. Медавару, а не Дж. К. Вільямсу. Це правда, що багато біологів, особливо в Америці, дізналися про цю теорію переважно з роботи Вільямса 1957 року «Плейотропія, природний добір та еволюція старіння». Правда і те, що Вільямс удосконалив теорію, лишивши позаду Медавара. Тим не менш, на мою думку, саме Медавар виклав суть цієї ідеї у своїх книгах «Невирішена проблема в біології» 1952-го та «Унікальність індивіда» 1957-го. Мушу додати, що вважаю розвиток цієї теорії, що до нього доклався Вільямс, дуже корисним, оскільки він розробляє необхідний етап у міркуваннях (важливість «плейотропії», або множинних ефектів гена), на якому Медавар не надто наголошує. Пізніше В. Д. Гамільтон зайшов у цій теорії ще далі в своїй статті «Формування старіння шляхом природного добору». До речі, я отримав багато цікавих листів від лікарів, але жоден, здається, не прокоментував мої здогади про «обдурювання» генів щодо віку організму, в якому вони перебувають (с. 86–87). Ця ідея все ще не бентежить мене як явно нерозумна, а якби вона була правильною, то чи не становила б значний інтерес для медицини?

13

З’ясування, що ж такого гарного є в статевому розмноженні, залишається все ще дражливим, навіть попри низку книг, що підбурюють уяву, особливо М. Т. Гізеліна, Дж. К. Вільямса, Дж. Мейнарда Сміта та Г. Белла, а також під редакцією Р. Мішо та Б. Левіна. Для мене найбільш захоплюючою новою ідеєю є теорія паразита авторства В. Д. Гамільтона, яку зрозумілою мовою виклали Джеремі Черфас та Джон Гріббін у книзі «Зайвий самець».

14

Моє припущення, що надлишкова, нетрансльована ДНК може бути корисливим паразитом, було підхоплене та розвинене молекулярними біологами (див. статті Орджела та Кріка, а також Дулітла та Сапієнци) під гучною назвою «Егоїстична ДНК». С. Дж. Гулд у своїй книзі «Зуби курки та пальці коня» зробив провокативну (для мене!) заяву, що, незважаючи на історичні витоки ідеї егоїстичної ДНК, «теорії егоїстичних генів та егоїстичної ДНК ніяк не могли бути більш різними за структурами пояснення, що їх зростили». Я вважаю його міркування неправильними, але цікавими, що, до речі, (як він достатньо люб’язно мені повідомив) зазвичай збігається з його думкою про мої власні. Після преамбули про «редукціонізм» та «ієрархію» (яку я також, як завжди, вважаю неправильною, але цікавою), він продовжує:

Частота егоїстичних генів Докінза зростає тому, що вони впливають на організми, допомагаючи в їхній боротьбі за існування. Частота егоїстичної ДНК зростає з діаметрально протилежної причини – тому, що вона ніяк не впливає на організми…

Я визнаю різницю, на якій наголошує Гулд, але не вважаю її фундаментальною. Навпаки, я все ще вважаю приклад егоїстичного ДНК особливим у теорії егоїстичного гена загалом – саме так ідея егоїстичної ДНК вперше й виникла. (На сторінці 237 цієї книги думка, що егоїстична ДНК є особливою ідеєю, мабуть, розписана ще краще, ніж в уривку зі сторінки 57, процитованому Дулітлом та Сапієнцею, а також Орджелом та Кріком. Дулітл та Сапієнца, до речі, використовують у назві їхньої статті вислів «егоїстичні гени», а не «егоїстична ДНК».) Дозвольте мені відповісти Гулду такою аналогією. Частота генів, які забезпечують жовто-чорні смужки ос, зростає, бо подібне («попереджувальне») забарвлення потужно стимулює мозок інших тварин. Частота генів, які забезпечують жовто-чорні смужки тигрів, зростає «з діаметрально протилежної причини» – бо, в ідеалі, подібне (захисне) забарвлення взагалі не стимулює мозок інших тварин. Отже, тут існує різниця, приблизно аналогічна (на іншому ієрархічному рівні!) різниці Гулда, але це лише невелика розбіжність у деталях. Ми навряд чи станемо стверджувати, що ці два приклади «не могли бути більш різними за принципами пояснення, що їх зростили». Орджел та Крік абсолютно праві, коли проводять аналогію між егоїстичною ДНК та яйцями зозулі: адже ті уникають викриття завдяки тому, що виглядають достоту як яйця господаря гнізда.

До речі, останнє видання «Оксфордського словника англійської мови» наводить нове значення слова «егоїстичний» «стосовно гена чи генетичного матеріалу: той, що прагне до увічнення або поширення, хоча не має впливу на фенотип». Це чудове стисле визначення терміна «егоїстична ДНК», причому в другому допоміжному прикладі саме йдеться про неї. Проте, на мою думку, остання фраза («хоча не має впливу на фенотип») доволі невдала. Егоїстичні гени можуть не мати впливу на фенотип, але багато з них його мають. Лексикографи могли би заявити, що прикладали це значення лише до «егоїстичної ДНК», яка справді не має фенотипових ефектів. Але їхній перший допоміжний приклад, узятий із книги «Егоїстичний ген», містить у собі егоїстичні гени, що мають ці ефекти. Проте мені гріх скаржитись, адже бути процитованим в «Оксфордському словнику англійської мови» – то неабияка честь!

Детальніше я розглядаю егоїстичну ДНК в книзі «Розширений фенотип».

Егоїстичний ген

Подняться наверх