Читать книгу The life of Pasteur - René Vallery-Radot - Страница 11
Оглавление“There is another factory of tartaric acid in Vienna. We go there; I repeat through M. Redtenbacher my string of questions. They have seen nothing. I ask to see their products, and I come upon a barrel full of tartaric acid crystals, on the surface of which I think I perceive the substance. A first test made with dirty old glasses then and there confirms my doubts; they become a certainty a few moments later at M. Redtenbacher’s laboratory. We dine together; then we go back to the factory, where we learn, miraculous to relate, that they are just now embarrassed in their manufacturing process, and, almost certainly, the product which hinders them—though it is in a very small quantity, and they take it for sulphate of potash—is no other than racemic acid. I wish I could give you more details of this eventful day. I was to have left Vienna to-day, but, as you will understand, I shall stay until I have unravelled this question. I have already in the laboratory three kinds of products from the factory. To-morrow night, or the day after, I shall know what to think....
“You remember what I used to say to you and to M. Dumas, that almost certainly the first operation which tartar goes through in certain factories causes it to lose all or nearly all its racemic acid. Well, in the two Viennese factories, it is only two years since they began to operate on crude tartar, and it is only two years since they first saw the supposed sulphate of potash, the supposed sulphate of magnesia. For, at M. Seybel’s, they had taken for sulphate of magnesia the little crystals of racemic acid.
“Shortly, this is as far as I have come—I spare you many details:—
1. “The Naples tartar contains racemic acid.
2. “The Austrian tartar (neighbourhood of Vienna) contains racemic acid.
3. “The tartars of Hungary, Croatia, Carniola contain racemic acid.
4. “The tartar of Naples contains notably more than the latter, for it presents racemic acid even after one refining process, whilst that from Austria and Hungary only presents it when in the crude state.
“I believe it now to be extremely probable that I shall find some racemic acid in French tartars, but in very small quantities; and if it is not detected it is because all the circumstances of the manufacture of tartaric acid are unknown or unappreciated, or because some little precaution is neglected that would preserve it or make it visible.
“You see, dear Marie, how useful was my journey.”
“Vienna, September 30, 1852. I am not going to Trieste; I shall start for Prague this evening.”
“Prague, October 1, 1852. Here is a startling piece of news. I arrive in Prague; I settle down in the Hôtel d’Angleterre, have lunch, and call on M. Rochleder, Professor of chemistry, so that he may introduce me to the manufacturer. I go to the chemist of the factory, Dr. Rassmann, for whom I had a letter from M. Redtenbacher, his former master. That letter contained all the questions that I usually make to the manufacturers of tartaric acid.
“Dr. Rassmann hardly took time to read the letter; he saw what it dealt with, and said to me: ‘I have long obtained racemic acid. The Paris Pharmaceutical Society offered a prize for whoever manufactured it. It is a product of manufacture; I obtain it with the assistance of tartaric acid.’ I took the chemist’s hand affectionately, and made him repeat what he had said. Then I added: ‘You have made one of the greatest discoveries that it is possible to make in chemistry. Perhaps you do not realise as I do the full importance of it. But allow me to tell you that, with my ideas, I look upon that discovery as impossible. I do not ask for your secret; I shall await the publication of it with the greatest impatience. So that is really true? You take a kilogramme of pure tartaric acid, and with that you make racemic acid?’
“‘Yes,’ he said; ‘but it is still’ ... and as he had some difficulty in expressing himself, I said: ‘It is still surrounded with great difficulties?’
“‘Yes, monsieur.’
“Great heavens! what a discovery! if he had really done what he says! But no; it is impossible. There is an abyss to cross, and chemistry is yet too young.”
Second letter, same date. “M. Rassmann is mistaken.... He has never obtained racemic acid with pure tartaric acid. He does what M. Fikentscher and the Viennese manufacturers do, with slight differences, which confirm the general opinion I expressed in my letter to M. Dumas a few days ago.”
That letter, and also another addressed to Biot, indicated that racemic acid was formed in varying quantities in the mother-liquor, which remained after the purification of crude tartars.
“I can at last,” Pasteur wrote from Leipzig to his wife, “turn my steps again towards France. I want it; I am very weary.”
In an account of this journey in a newspaper called La Vérité there was this sentence, which amused everybody, Pasteur included: “Never was treasure sought, never adored beauty pursued over hill and vale with greater ardour.”
But the hero of scientific adventures was not satisfied. He had foreseen by the examination of crystalline forms, the correlation between hemihedral dissymmetry and rotatory power; this was, to his mind, a happy foresight. He had afterwards succeeded in separating the racemic acid, inactive on polarized light, into two acids, left and right, endowed with equal but contrary rotatory powers; this was a discovery deservedly qualified as memorable by good judges in those matters. Now he had indicated the mother-liquor as a source of racemic acid, and this was a precious observation that Kestner, who was specially interested in the question, confirmed in a letter to the Académie des Sciences (December, 1852), sending at the same time three large phials of racemic acid, one of which, made of thin glass, broke in Biot’s hands. But a great advance, apparently unrealizable, remained yet to be accomplished. Could not racemic acid be produced by the aid of tartaric acid?
Pasteur himself, as he told the optimist Rassmann, did not believe such a transformation possible. But, by dint of ingenious patience, of trials, of efforts of all sorts, he fancied he was nearing the goal. He wrote to his father: “I am thinking of one thing only, of the hope of a brilliant discovery which seems not very far. But the result I foresee is so extraordinary that I dare not believe it.” He told Biot and Senarmont of this hope. Both seemed to doubt. “I advise you,” wrote Senarmont, “not to speak until you can say: ‘I obtain racemic acid artificially with some tartaric acid, of which I have myself verified the purity; the artificial acid, like the natural, divides itself into equal equivalents of left and right tartaric acids, and those acids have the forms, the optical properties, all the chemical properties of those obtained from the natural acid.’ Do not believe that I want to worry you; the scruples I have for you I should have for myself; it is well to be doubly sure when dealing with such a fact.” But with Biot, Senarmont was less reserved; he believed the thing done. He said so to Biot, who, prudent and cautious, still desirous of warning Pasteur, wrote to him on May 27, 1853, speaking of Senarmont: “The affection with which your work, your perseverance and your moral character have inspired him makes him desire impossible prodigies for you. My friendship for you is less hastily hopeful and harder to convince. However, enjoy his friendship fully, and be as unreserved with him as you are with me. You can do so in full security; I do not know a stronger character than his. I have said and repeated to him how happy I am to see the affection he bears you. For there will be at least one man who will love you and understand you when I am gone. Farewell; enough sermons for to-day; a man must be as I am, in his eightieth year, to write such long homilies. Fortunately you are accustomed to mine, and do not mind them.”
At last, on the first of June, here is the letter announcing the great fact: “My dear father, I have just sent out the following telegram: Monsieur Biot, Collège de France, Paris. I transform tartaric acid into racemic acid; please inform MM. Dumas and Senarmont. Here is at last that racemic acid (which I went to seek at Vienna) artificially obtained through tartaric acid. I long believed that that transformation was impossible. This discovery will have incalculable consequences.”
“I congratulate you,” answered Biot on the second of June. “Your discovery is now complete. M. de Senarmont will be as delighted as I am. Please congratulate also Mme. Pasteur from me; she must be as pleased as you.” It was by maintaining tartrate of cinchonin at a high temperature for several hours that Pasteur had succeeded in transforming tartaric acid into racemic acid. Without entering here into technical details (which are to be found in a report of the Paris Pharmaceutical Society, concerning the prize accorded to Pasteur for the artificial production of racemic acid) it may be added that he had also produced the neutral tartaric acid—that is: with no action on polarized light—which appeared at the expense of racemic acid already formed. There were henceforth four different tartaric acids:—(1) the right or dextro-tartaric acid; (2) the left or lævo-tartaric acid; (3) the combination of the right and the left or racemic acid; and (4) the meso-tartaric acid, optically inactive.
The reports of the Académie des Sciences also contain accounts of occasional discoveries, of researches of all kinds accessory to the history of racemic acid. Thus aspartic acid had caused Pasteur to make a sudden journey from Strasburg to Vendôme. A chemist named Dessaignes—who was municipal receiver of that town, and who found time through sheer love of science for researches on the constitution of divers substances—had announced a fact which Pasteur wished to verify; it turned out to be inaccurate.
One whole sitting of the Académie, the third of January, 1853, was given up to Pasteur’s name and growing achievements.
After all this Pasteur came back to Arbois with the red ribbon of the Legion of Honour. He had not won it in the same way as his father had, but he deserved it as fully. Joseph Pasteur, delighting in his illustrious son, wrote effusively to Biot; indeed the old scientist had had his share in this act of justice. Biot answered in the following letter, which is a further revelation of his high and independent ideal of a scientific career.
“Monsieur, your good heart makes out my share to be greater than it is. The splendid discoveries made by your worthy and excellent son, his devotion to science, his indefatigable perseverance, the conscientious care with which he fulfils the duties of his situation, all this had made his position such that there was no need to solicit for him what he had so long deserved. But one might boldly point out that it would be a real loss to the Order if he were not promptly included within its ranks. That is what I did, and I am very glad to see that the too long delay is now at an end. I wished for this all the more as I knew of your affectionate desire that this act of justice should be done. Allow me to add, however, that in our profession our real distinction depends on us alone, fortunately, and not on the favour or indifference of a minister. In the position that your son has acquired, his reputation will grow with his work, no other help being needed; and the esteem he already enjoys, and which will grow day by day, will be accorded to him, without gainsaying or appeal, by the Grand Jury of scientists of all nations—an absolutely just tribunal, the only one we recognize.
“Allow me to add to my congratulations the expression of the esteem and cordial affection with which you have inspired me.”
On his return to Strasburg Pasteur went to live in a house in the Rue des Couples, which suited him as being near the Académie and his laboratory; it also had a garden where his children could play. He was full of projects, and what he called the “spirit of invention” daily suggested some new undertaking. The neighbourhood of Germany, at that time a veritable hive of busy bees, was a fertile stimulant to the French Faculty at Strasburg.
But material means were lacking. When Pasteur received the prize of 1,500 francs given him by the Pharmaceutical Society, he gave up half of it to buying instruments which the Strasburg laboratory was too poor to afford. The resources then placed by the State at his disposal by way of contribution to the expenses of a chemistry class only consisted of 1,200 francs under the heading “class expenses.” Pasteur had to pay the wages of his laboratory attendant out of it. Now that he was better provided, thanks to his prize, he renewed his studies on crystals.
Taking up an octahedral crystal, he broke off a piece of it, then replaced it in its mother-liquor. Whilst the crystal was growing larger in every direction by a deposit of crystalline particles, a very active formation was taking place on the mutilated part; after a few hours the crystal had again assumed its original shape. The healing up of wounds, said Pasteur, might be compared to that physical phenomenon. Claude Bernard, much struck later on by these experiments of Pasteur’s and recalling them with much praise, said in his turn—
“These reconstituting phenomena of crystalline redintegration afford a complete comparison with those presented by living beings in the case of a wound more or less deep. In the crystal as in the animal, the damaged part heals, gradually taking back its original shape, and in both cases the reformation of tissue is far more active in that particular part than under ordinary evolutive conditions.”
Thus those two great minds saw affinities hidden under facts apparently far apart. Other similarities yet more unexpected carried Pasteur away towards the highest region of speculation. He spoke with enthusiasm of molecular dissymmetry; he saw it everywhere in the universe. These studies in dissymmetry gave birth twenty years later to a new science arising immediately out of his work, viz. stereo-chemistry, or the chemistry of space. He also saw in molecular dissymmetry the influence of a great cosmic cause—
“The universe,” he said one day, “is a dissymmetrical whole. I am inclined to think that life, as manifested to us, must be a function of the dissymmetry of the universe and of the consequences it produces. The universe is dissymmetrical; for, if the whole of the bodies which compose the solar system were placed before a glass moving with their individual movements, the image in the glass could not be superposed to the reality. Even the movement of solar life is dissymmetrical. A luminous ray never strikes in a straight line the leaf where vegetable life creates organic matter. Terrestrial magnetism, the opposition which exists between the north and south poles in a magnet, that offered us by the two electricities positive and negative, are but resultants from dissymmetrical actions and movements.”
“Life,” he said again, “is dominated by dissymmetrical actions. I can even foresee that all living species are primordially, in their structure, in their external forms, functions of cosmic dissymmetry.”
And there appeared to him to be a barrier between mineral or artificial products and products formed under the influence of life. But he did not look upon it as an impassable one, and he was careful to say, “It is a distinction of fact and not of absolute principle.” As nature elaborates immediate principles of life by means of dissymmetrical forces, he wished that the chemist should imitate nature, and that, breaking with methods founded upon the exclusive use of symmetrical forces, he should bring dissymmetrical forces to bear upon the production of chemical phenomena. He himself, after using powerful magnets to attempt to introduce a manifestation of dissymmetry into the form of crystals, had had a strong clockwork movement constructed, the object of which was to keep a plant in continual rotatory motion first in one direction then in another. He also proposed to try to keep a plant alive, from its germination under the influence of solar rays reversed by means of a mirror directed by a heliostat.
But Biot wrote to him: “I should like to be able to turn you from the attempts you wish to make on the influence of magnetism on vegetation. M. de Senarmont agrees with me. To begin with, you will spend a great deal on the purchase of instruments with the use of which you are not familiar, and of which the success is very doubtful. They will take you away from the fruitful course of experimental researches which you have followed hitherto, where there is yet so much for you to do, and will lead you from the certain to the uncertain.”
“Louis is rather too preoccupied with his experiments,” wrote Mme. Pasteur to her father-in-law; “you know that those he is undertaking this year will give us, if they succeed, a Newton or a Galileo.”
But success did not come. “My studies are going rather badly,” wrote Pasteur in his turn (December 30). “I am almost afraid of failing in all my endeavours this year, and of having no important achievement to record by the end of next year. I am still hoping, though I suppose it was rather mad to undertake what I have undertaken.”
Whilst he was thus struggling, an experiment, which for others would have been a mere chemical curiosity, interested him passionately. Recalling one day how his first researches had led him to the study of ferments: “If I place,” he said, “one of the salts of racemic acid, paratartrate or racemate of ammonia, for instance, in the ordinary conditions of fermentation, the dextro-tartaric acid alone ferments, the other remains in the liquor. I may say, in passing, that this is the best means of preparing lævo-tartaric acid. Why does the dextro-tartaric acid alone become putrefied? Because the ferments of that fermentation feed more easily on the right than on the left molecules.”
“I have done yet more,” he said much later, in a last lecture to the Chemical Society of Paris; “I have kept alive some little seeds of penicillium glaucum—that mucor which is to be found everywhere—on the surface of ashes and paratartaric acid and I have seen the lævo-tartaric acid appear....”
What seemed to him startling in those two experiments was to find molecular dissymmetry appear as a modifying agent on chemical affinities in a phenomenon of the physiological order.
By an interesting coincidence it was at the very moment when his studies were bringing him towards fermentations that he was called to a country where the local industry was to be the strongest stimulant to his new researches.