Читать книгу Applied Colloid and Surface Chemistry - Richard M. Pashley - Страница 19

B. SOME HISTORICAL NOTES ON COLLOID AND SURFACE CHEMISTRY

Оглавление

John Freind at Oxford (1675–1728) was the first person to realise that intermolecular forces are of shorter range than gravity.

Young (1805) estimated range of intermolecular forces at about 0.2 nm. Turns out to be something of an underestimate.

Young and Laplace (1805) derived meniscus curvature equation.

Brown (1827) observed the motion of fine particles in water.

Johannes D. van der Waals (1837–1923) was a schoolmaster who produced a doctoral thesis on the effects of intermolecular forces on the properties of gases (1873).

Michael Faraday (1857) made colloidal solutions of gold.

Thomas Graham (1860) recognised the existence of colloids in the mid‐19th century.

Schulze and Hardy (1882–1900) studied the effects of electrolytes on colloid stability.

Perrin (1903) used the terms ‘lyophobic’ and ‘lyophilic’ to denote irreversible and reversible coagulation.

Ostwald (1907) developed the concepts of ‘disperse phase’ and ‘dispersion medium’.

Gouy and Chapman (1910–1913) both independently used the Poisson‐Boltzmann equations to describe the diffuse electrical double‐ layer formed at the interface between a charged surface and an aqueous solution.

Ellis and Powis (1912–1915) introduced the concept of the critical zeta potential for the coagulation of colloidal solutions.

London (1920) first developed a theoretical basis for the origin of intermolecular forces.

Debye (1920) used polarisability of molecules to estimate attractive forces.

Debye and Huckel (1923) used a similar approach to Gouy and Chapman to calculate the activity coefficients of electrolytes.

Stern (1924) introduced the concept of specific ion adsorption at surfaces.

Kallmann and Willstatter (1932) calculated van der Waals force between colloidal particles using summation procedure and suggested that a complete picture of colloid stability could be obtained on the basis of electrostatic double‐layer and van der Waals forces.

Bradley (1932) also independently calculated van der Waals forces colloidal particles.

Hamaker (1932) and de Boer (1936) calculated van der Waals forces on macroscopic bodies using summation method.

Derjaguin, Landau, Verwey, and Overbeek (1941–1948) developed the DLVO theory of colloid stability.

Lifshitz (1955–1960) developed a complete quantum electrodynamic (continuum) theory for the van der Waals interaction between macroscopic bodies.

Applied Colloid and Surface Chemistry

Подняться наверх