Читать книгу Maths on the Back of an Envelope - Rob Eastaway - Страница 12

VARIABILITY

Оглавление

In the General Election of May 2017, there was a shock result in London’s Kensington constituency. The sitting MP was a Conservative with a healthy majority, but in the small hours of the Friday, news came through that the result was too close to call, and there was going to be a recount. Hours later, it was announced that there needed to be a second recount. And then, when even that failed to resolve the result, the staff were given a few hours to get some sleep, and then returned for a third recount the following day.

Finally, the returning officer was able to confirm the result: Labour’s Emma Dent Coad had defeated Victoria Borwick of the Conservatives.

The margin, however, was tiny. Coad won by just 20 votes, with 16,333 to Borwick’s 16,313.

You might expect that if there is one number of which we can be certain, down to the very last digit, it is the number we get when we have counted something.

Yet the truth is that even something as basic as counting the number of votes is prone to error. The person doing the counting might inadvertently pick up two voting slips that are stuck together. Or when they are getting tired, they might make a slip and count 28, 29, 40, 41 … Or they might reject a voting slip that another counter would have accepted, because they reckon that marks have been made against more than one candidate.

As a rule of thumb, some election officials reckon that manual counts can only be relied on within a margin of about 1 in 5,000 (or 0.02%), so with a vote like the one in Kensington, the result of one count might vary by as many as 10 votes when you do a recount.6

And while each recount will typically produce a slightly different result, there is no guarantee which of these counts is actually the correct figure – if there is a correct figure at all. (In the famously tight US Election of 2000, the result in Florida came down to a ruling on whether voting cards that hadn’t been fully punched through, and had a hanging ‘chad’, counted as legitimate votes or not.)

Re-counting typically stops when it is becoming clear that the error in the count isn’t big enough to affect the result, so the tighter the result, the more recounts there will be. There have twice been UK General Election votes that have had seven recounts, both of them in the 1960s, when the final result was a majority below 10.

All this shows that when it is announced that a candidate such as Coad has received 16,333 votes, it should really be expressed as something vaguer: ‘Almost certainly in the range 16,328 to 16,338’ (or in shorthand, 16,333 ± 5).

If we can’t even trust something as easy to nail down as the number of votes made on physical slips of paper, what hope is there for accurately counting other things that are more fluid?

In 2018, the two Carolina states in the USA were hit by Hurricane Florence, a massive storm that deposited as much as 50 inches of rain in some places. Among the chaos, a vast number of homes lost power for several days. On 18 September, CNN gave this update:

511,000—this was the number of customers without power Monday morning—according to the US Energy Information Administration. Of those, 486,000 were in North Carolina, 15,000 in South Carolina and 15,000 in Virginia. By late Monday, however, the number [of customers without power] in North Carolina had dropped to 342,884.

For most of that short report, numbers were being quoted in thousands. But suddenly, at the end, we were told that the number without power had dropped to 342,884. Even if that number were true, it could only have been true for a period of a few seconds when the figures were collated, because the number of customers without power was changing constantly.

And even the 486,000 figure that was quoted for North Carolina on the Monday morning was a little suspicious – here we had a number being quoted to three significant figures, while the two other states were being quoted as 15,000 – both of which looked suspiciously like they’d been rounded to the nearest 5,000. This is confirmed if you add up the numbers: 15,000 + 15,000 + 486,000 = 516,000, which is 5,000 higher than the total of 511,000 quoted at the start of the story.

So when quoting these figures, there is a choice. They should either be given as a range (‘somewhere between 300,000 and 350,000’) or they should be brutally rounded to just a single significant figure and the qualifying word ‘roughly’ (so, ‘roughly 500,000’). This makes it clear that these are not definitive numbers that could be reproduced if there was a recount.

And, indeed, there are times when even saying ‘roughly’ isn’t enough.

Every month, the Office for National Statistics publishes the latest UK unemployment figures. Of course this is always newsworthy – a move up or down in unemployment is a good indicator of how the economy is doing, and everyone can relate to it. In September 2018, the Office announced that UK unemployment had fallen by 55,000 from the previous month to 1,360,000.

The problem, however, is that the figures published aren’t very reliable – and the ONS know this. When they announced those unemployment figures in 2018, they also added the detail that they had 95% confidence that this figure was correct to within 69,000. In other words, unemployment had fallen by 55,000 plus or minus 69,000. This means unemployment might actually have gone down by as many as 124,000, or it might have gone up by as many as 14,000. And, of course, if the latter turned out to be the correct figure, it would have been a completely different news story.

When the margin of error is larger than the figure you are quoting, there’s barely any justification in quoting the statistic at all, let alone to more than one significant figure. The best they can say is: ‘Unemployment probably fell slightly last month, perhaps by about 50,000.’

It’s another example of how a rounded, less precise figure often gives a fairer impression of the true situation than a precise figure would.

Maths on the Back of an Envelope

Подняться наверх