Читать книгу Practical Exercises in Elementary Meteorology - Robert DeCourcy Ward - Страница 6

PRACTICAL EXERCISES IN ELEMENTARY METEOROLOGY
Part II.—Instrumental Observations
CHAPTER III.
ADVANCED INSTRUMENTAL OBSERVATIONS

Оглавление

The instruments for more advanced study are the following: maximum and minimum thermometers, wet and dry-bulb thermometers, sling psychrometer, standard barometer, thermograph, barograph, and anemometer.


Fig. 7.


Maximum and minimum thermometers are usually mounted together on a board, as shown in Fig. 7, the lower one of the two being the maximum, and the upper the minimum. In the view of the instrument shelter (Fig. 2), these thermometers are seen on the left. The minimum thermometer, when attached to its support, is either exactly horizontal or else slopes downward somewhat towards the bulb end, as shown in Fig. 7. These instruments, as their names imply, register the highest and the lowest temperatures, respectively, which occur during each day of 24 hours. The maximum thermometer is filled with mercury. Its tube is narrowed just above the bulb, in such a way that the mercury passes through the constriction with some difficulty. As the temperature rises, the mercury, in expanding, is forced out from the bulb through this narrow passage. When the temperature falls, however, the mercury above this point cannot get back into the bulb, there being nothing to force it back. The length of the mercury column, therefore, remains the same as it was when the temperature was highest, and the instrument is read by observing the number of degrees indicated by the top, or right-hand end, of the mercury column upon the scale. After reading, the thermometer is set by removing the brass pin upon which the bulb end rests, and whirling the instrument rapidly around the pin to which its upper end is fastened. By this process the mercury is driven back into the bulb, past the constriction. Care must be taken to stop the thermometer safely while it is whirling. After setting, the reading of the maximum thermometer should agree closely with that of the ordinary or dry-bulb thermometer.

The minimum thermometer is filled with alcohol, and contains within its tube a small black object, called the index, which resembles a double-headed black pin. The instrument is so constructed that this index, when placed with its upper, or right-hand end, at the surface of the alcohol, is left behind, within the alcohol, when the temperature rises. On the other hand, when the temperature falls, the index is drawn towards the bulb by the surface cohesion of the alcohol, the top or right end of the index thus marking the lowest temperature reached. The upper end of the thermometer is firmly fastened, by means of a screw, to a brass support, while the lower end rests upon a notched arm. In setting this instrument, the bulb end is raised until the index slides along the tube to the end of the alcohol column. The thermometer is then carefully lowered back into the notch just referred to. Maximum and minimum thermometers need to be read only once a day, in the evening. The temperatures then recorded are the highest and lowest reached during the preceding 24 hours. The observation hour is preferably 8 P.M., but if this is inconvenient, or impracticable, the reading may be made earlier in the afternoon. The hour, however, should be as late as possible, and should not be varied from day to day. The maximum temperature sometimes occurs in the night. The maximum and the minimum temperatures should be entered every day, in a column headed “Maximum and Minimum Temperatures,” in your record book.

The wet- and dry-bulb thermometers, together commonly known as the psychrometer (Greek: cold measure), are simply two ordinary mercurial thermometers, the bulb of one of which is wrapped in muslin, and kept moist by means of a wick leading from the muslin cover to a small vessel of water attached to the frame (see Fig. 8). The wick carries water to the bulb just as a lamp wick carries oil to the flame. The psychrometer is seen inside the shelter on the right in Fig. 2.


Fig. 8.


The air always has more or less moisture in it. Even the hot, dry air of deserts contains some moisture. This moisture is either invisible or visible. When invisible it is known as water vapor, and is a gas. When visible, it appears as clouds and fog, or in the liquid or solid form of rain, snow, and hail. The amount of moisture in the air, or the humidity of the air, varies according to the temperature and other conditions. When the air contains as much water vapor as it can hold, it is said to be saturated. Its humidity is then high. When the air is not saturated, evaporation goes on into it from moist surfaces and from plants. Water which changes to vapor is said to evaporate.

This process of evaporation needs energy to carry it on, and this energy often comes from the heat of some neighboring body. When you fan yourself on a very hot day in summer, the evaporation of the moisture on your face takes away some of the heat from the skin, and you feel cooler. The drier the air on a hot day, the greater is the evaporation from all moist bodies, and hence the greater the amount of cooling of the surfaces of those bodies. For this reason a hot day in summer, when the air is comparatively dry, that is, not saturated with moisture, is cooler, other things being equal, than a hot day when the air is very moist. Over deserts the air is often so hot and dry that evaporation from the face and hands is very great, and the skin is burned and blistered. Over the oceans, near the equator, the air is hot and excessively damp, so that there is hardly any cooling of the body by evaporation, and the conditions are very uncomfortable. This region is known as the “Doldrums.”

The temperatures that are felt at the surface of the skin, especially where the skin is exposed, as on the face and hands, have been named sensible temperatures. Our sense of comfort in hot weather depends on the sensible temperatures. These sensible temperatures are not the same as the readings of the ordinary (dry-bulb) thermometer, because our sensation of heat or cold depends very largely on the amount of evaporation from the surface of the body, and the temperature of evaporation is obtained by means of the wet-bulb thermometer. Wet-bulb readings at the various stations of the Weather Bureau are entered on all our daily weather maps. In summer (July) the sensible (wet-bulb) temperatures are 20° below the ordinary air temperature in the dry southwestern portion of the United States (Nevada, Arizona, Utah). The mean July sensible temperatures there are from 50° to 65°; while on the Atlantic coast, from Boston to South Carolina, they are between 65° and 75°. Hence over the latter district the temperatures actually experienced in July average higher than in the former.

Unless the air is saturated with water vapor, the evaporation from the surface of the wet-bulb thermometer will lower the temperature indicated by that instrument below that shown by the dry-bulb thermometer next to it, from which there is no evaporation. The drier the air, the greater the evaporation, and therefore the greater the difference between the readings of the two thermometers. By means of tables, constructed on the basis of laboratory experiments, we may, knowing the readings of the wet and dry-bulb thermometers, easily determine the dew-point and the relative humidity of the air—important factors in meteorological observations (see Chapter XXVI). In winter, when the temperature is below freezing, the muslin of the wet-bulb thermometer should be moistened with water a little while before a reading is to be made. The amount of water vapor which air can contain depends on the temperature of the air. The higher the temperature, the greater is the capacity of the air for water vapor. Hence it follows that, if the temperature is lowered when air is saturated, the capacity of the air is diminished. This means that the air can no longer contain the same amount of moisture (invisible water vapor) as before. Part of this moisture is therefore changed, condensed, as it is said, from the condition of water vapor into that of cloud, fog, rain, or snow. The temperature at which this change begins is called the dew-point of the air.

The relative humidity of the air is the ratio between the amount of water vapor which the air contains at any particular time and the total amount which it could contain at the temperature it then has. Relative humidity is expressed in percentages. Thus, air with a relative humidity of 50% has just half as much water vapor in it as it could hold.

It is found that the readings of the wet-bulb thermometer are considerably affected by the amount of air movement past the bulb, and that in a light breeze, or in a calm, the reading does not give accurate results as to the humidity of the general body of air outside the shelter.

To overcome this difficulty another form of psychrometer has been devised.

The sling psychrometer (Fig. 9) consists simply of a pair of wet and dry-bulb thermometers, fastened together on a board or a strip of metal, to the upper part of which a cord with a loop at the end is attached. In this form of psychrometer there is no vessel of water and no wick, but the muslin cover of the wet-bulb thermometer must be thoroughly wet, by immersion in water, just before each observation. The instrument is then whirled around the hand at the rate of about 12 feet a second. After whirling about 50 times, note the readings, and then whirl the instrument again, and so on, until the wet bulb reaches its lowest reading. The lowest reading of the wet bulb, and the reading of the dry bulb at the same time, are the two observations that should be recorded. Take care to have the muslin wet throughout each observation, and in windy weather stand to leeward of the instrument, so that it may not be affected by the heat of your body. The true reading may be obtained within two or three minutes.


Fig. 9.


Make observations with the wet-bulb thermometer or the sling psychrometer as a part of your regular daily weather record. Note the temperatures indicated by the wet and dry bulbs, and, by means of the table in Chapter XXVI, obtain the dew-point and the relative humidity of the air at each observation. Enter these data in your record book, in a column headed “Humidity,” and subdivided into two columns, one for the dew-point and one for the relative humidity.


Fig. 10.


By means of observations with the psychrometer you will be able to answer such questions as the following:—

Does the relative humidity vary from day to day? Has it any relation to the direction of the wind? To the state of the sky? To precipitation? Does it show any regular variations during the course of a day? How does a high degree of relative humidity affect you in cold weather? In hot weather? Between what limits of percentages does the relative humidity vary? Do the changes come gradually or suddenly? Are these changes related in any way to the changes in the other weather elements? How do the sensible temperatures vary? In what weather conditions do the sensible temperatures differ most from the air temperatures? In what seasons? Compare the sensible temperatures obtained by your own observations with the sensible temperatures at various stations of the Weather Bureau, as given on the daily weather map. Are there any fairly regular differences between the sensible temperatures observed at your own station and the Weather Bureau stations?

Standard Mercurial Barometer.—A simple form of barometer has been described in Chapter II. The ordinary standard mercurial barometer used by the Weather Bureau (Fig. 10) has the glass tube containing the mercury surrounded by a thin brass covering, through which openings are cut, near the top, on the front and back, exposing to view the glass tube and the top of the mercury column. On one side of this opening there is a strip of metal, graduated to inches and tenths or twentieths, by means of which the height of the barometer is determined. This strip, for barometers used at or near sea level, is about 4 inches long, the variations in pressure under normal conditions not exceeding that amount. In addition to this fixed scale there is a small scale, also graduated, which may be moved up and down the opening in the enclosing brass case by means of a milled head outside and a small rack and pinion inside the brass case. This movable scale, known as the vernier from the name of its inventor, Vernier, is an ingenious device, by means of which more accurate readings of the barometer can be made than is possible with the ordinary fixed scale. A vernier graduated into twenty-five parts enables the observer to make readings accurately to the one-thousandth part of an inch. On the front of the barometer there is a small thermometer, known as the attached thermometer. The bulb of this thermometer, concealed within the metal casing of the barometer, is nearly in contact with the glass tube containing the mercury. The air, upon whose weight the height of the mercury column depends, gains access to the top of the cistern through leather joints, by which the cistern is joined to the glass tube.

Mercurial barometers of the Weather Bureau pattern are best hung in a barometer box, fastened securely against the wall of a room, where there is a good light on the instrument and where the temperature is as constant as possible.

In all accurate work certain corrections have to be applied to barometer readings to make them strictly comparable. These are: (1) correction for altitude; (2) correction for temperature; and (3) correction for latitude. The first is necessary because of the fact that the weight of the air decreases upwards, and a barometer reading on a hill or a mountain is not comparable with one at sea level unless the former has been corrected by the addition of the weight of the column of air between the hill or mountain and sea level. The correction for temperature is rendered necessary by the fact that with increasing temperature the mercury in the barometer tube expands more than the metallic scale, because mercury is more sensitive to heat, and unless some allowance is made for this fact, barometer readings made at high temperatures will show somewhat too high a pressure. The readings of the attached thermometer give the temperature of the mercury and are used in making the corrections for temperature. As gravity varies from a maximum value at the poles to a minimum value at the equator, barometer readings made at different latitudes are corrected for latitude, which means that they are reduced to latitude 45°, midway between 0° and 90°. The correction is +0.08″ at the poles and -0.08″ at the equator. Tables for use in correcting barometer readings for altitude and for temperature are given in Chapter XXVI.


Fig. 11.


Thermograph and Barograph.—Two instruments of much interest are the self-recording thermometer, or thermograph, and the self-recording barometer, or barograph, manufactured by Richard Brothers of Paris. In the thermograph (Fig. 11) there is a brass cylinder around which a sheet of paper is wound, this paper being divided into two-hour intervals of time and into spaces representing differences of 5° or 10° of temperature. The cylinder revolves once in a week, being driven by clock-work contained within it. The thermometer consists of a flat, bent, hollow brass tube containing alcohol, one end of the tube being fastened to the metallic frame seen at the right of the figure, and the other end being free to move. With rising temperature, the liquid in the tube expanding more than the metallic casing, by reason of its greater sensitiveness to heat, tends to straighten the tube, while with falling temperature the elasticity of the tube turns it into a sharper curve. These movements of the free end of the tube are carried through a train of levers and thus magnified. At the end of the last lever is a metallic pen filled with ink, which rests lightly against the paper on the revolving drum. A rise or fall in temperature is thus recorded by a rise or fall of the pen on the record sheet, and a continuous curve of temperature is secured. The pen of the thermograph should be frequently adjusted to make the reading of the instrument accord with that of a standard mercurial thermometer, and care should be taken to have the clock keep good time. These adjustments can readily be made by means of a screw and a regulator, respectively. The thermograph should be exposed in the instrument shelter with the other thermometers. The sheets should be changed, the clock wound, and the pen filled once a week, preferably on Monday, at 8 A.M., or at noon.

The continuous records written by a thermograph are a valuable addition to the fragmentary observations which are the result of eye readings of the ordinary thermometer. From the former any omitted thermometer readings may be supplied. The interest of thermograph records may be seen in the following figure (Fig. 12), in which curves traced under different conditions are reproduced. Curve a illustrates a period of clear warming weather at Nashua, N. H., April 27-30, 1889. Curve b was traced during a spell of cloudy weather at Nashua, accompanying the passage of a West India hurricane, Sept. 13-16, 1889. Curve c illustrates the change from a time of moderate winter weather to a cold spell (Nashua, Feb. 22-25, 1889). Curve d exhibits a steady fall of temperature from the night of one day over the next noon to the following night, during the approach of a winter cold spell (Nashua, Jan. 19-21, 1889). Curve e shows a reverse condition, viz., a continuous rise of temperature through a night from noon to noon (Nashua, Dec. 16-17, 1888). Curve f shows the occurrence of a high temperature at night, caused by warm southerly winds, followed by cold westerly winds (Cambridge, Mass., Nov. 30-Dec. 1, 1890). Curve g illustrates the sudden rise of temperature due to the coming of a hot, dry wind (chinook) at Fort Assiniboine, Mont. (Jan. 19, 1892). A study of such records leads to the discovery of many important facts, which would be completely lost sight of without a continuous record.


Fig. 12.


The barograph (Fig. 13) is very similar to the thermograph in general appearance. The essential portion of this instrument consists of a series of six or eight hollow shells of corrugated metal screwed one over the other in a vertical column. These shells are exhausted of air, and form, in reality, an aneroid barometer which is six or eight times as sensitive as the ordinary single-chamber aneroid. The springs for distending the shells are inside. The base of the column being fixed, the upper end rises and falls with the variations in pressure. The movements of the shells are magnified by being carried through a series of levers, and, as in the thermograph, the motion is finally given to a pen at the end of the long lever. The compensation for temperature is the same as in the ordinary aneroid. A small quantity of air is left in one of the shells to counteract, by its own expansion at increased temperature, the tendency of the barometer to register too low on account of the weakening of the springs. The barograph may be placed upon a shelf in the schoolroom, where it can remain free from disturbance, and yet where the record may be clearly seen. The general care of the barograph is the same as that of the thermograph. Brief instructions concerning the care and adjustments of these instruments are sent out by the makers with each instrument. Frequent comparison with a mercurial barometer is necessary, the adjustment of the barograph being made by turning a screw, underneath the column of shells, on the lower side of the wooden case.

Practical Exercises in Elementary Meteorology

Подняться наверх