Читать книгу Molecular Mechanisms of Photosynthesis - Robert E. Blankenship - Страница 38

References

Оглавление

1 Alberts, B., Johnson, A. D., Lewis, J., Morgan, D., Raff, M., Roberts, K., and Walter, P. (2014) The Molecular Biology of the Cell, 6th Edn. New York: W.W. Norton.

2 Beatty, J. T., Overmann, J., Lince, M. T., Manske, A. K., Lang, A. S., Blankenship, R. E., Van Dover, C. L., Martinson, T. A., and Plumley, F. G. (2005) An obligately photosynthetic bacterial anaerobe from a deep‐sea hydrothermal vent. Proceedings of the National Academy of Sciences USA 102: 9306–9310.

3 Blankenship, R. E. (2010) Early evolution of photosynthesis. Plant Physiology 154: 434–438.

4 Blankenship, R. E., Madigan, M. T., and Bauer, C. E., (eds.) (1995) Anoxygenic Photosynthetic Bacteria. Dordrecht: Kluwer Academic Press.

5 Bryant, D. A., (ed.) (1994) The Molecular Biology of Cyanobacteria. Dordrecht: Kluwer Academic Press.

6 Bryant, D. A., Costas, A. M., Maresca, J. A., Chew, A. G. M., Klatt, C., Bateson, M. M., Tallon, L. J., Hostetler, J., Nelson, W. C., Heidelberg, J. F., and Ward, D. M. (2007) Candidatus Chloracidobacterium thermophilum: An aerobic phototrophic acidobacterium. Science 317: 523–526.

7 Cavalier‐Smith, T. (1999) Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. Journal of Eukaryotic Microbiology 46: 347–366.

8 Chen, M., Schliep, M., Willows, R. D., Cai, Z.‐L., Neilan, B. A., and Scheer, H. (2010) A red‐shifted chlorophyll. Science 329: 1318–1319.

9 Daum, B. and Kühlbrandt, W. (2011) Electron tomography of plant thylakoid membranes. Journal of Experimenatal Botany 62: 2393–2402.

10 Doolittle, W. F. (1999) Phylogenetic classification and the universal tree. Science 284: 2124–2128.

11 Fleischman, D. and Kramer, D. (1998) Photosynthetic rhizobia. Biochimica et Biophysica Acta 1364: 17–36.

12 Flores, E. and Herrero, A., (eds.) (2014) The Cell Biology of Cyanobacteria. Poole: Caister.

13 Frigaard, N. U. and Dahl, C. (2009) Sulfur metabolism in phototrophic sulfur bacteria. Advances in Microbial Physiology 54: 103–200.

14 Fuchs, G. (2011) Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life? Annual Review of Microbiology 65: 631–658.

15 Gest, H. (1994) Discovery of the heliobacteria. Photosynthesis Research 41: 17–21.

16 Graham, J. E., Wilcox, L. W., and Graham, L. E. (2008) Algae, 2nd Edn. San Francisco: Benjamin Cummings.

17 Hanada, S. and Pierson, B. K. (2006) The family Chloroflexaceae. In: M. Dworkin, S. Falkow, E. Rosenberg, K.‐H. Schliefer, and E. Stackebrandt, (eds.) The Prokaryotes, 3rd Edn. Berlin: Springer‐Verlag, pp. 815–842.

18 Hohmann‐Marriott, M. F. and Blankenship, R. E. (2012) The photosynthetic world. In: J. J. Eaton‐Rye, B. C. Tripathy, and T. D. Sharkey, (eds.) Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Dordrecht: Springer.

19 Hunter, C. N., Daldal, F., Thurnauer, M. C., and Beatty, J. T., (eds.) (2009) The Purple Phototrophic Bacteria. Dordrecht: Springer.

20 Keeling, P. J. (2013) The number, speed, and impact of plastid Endosymbioses in eukaryotic evolution. Annual Review of Plant Biology 64: 583–607.

21 Kolber, Z. S., Plumley, F. G., Lang, A. S., Beatty, J. T., Blankenship, R. E., Van Dover, C. L., Vetriani, C., Koblizek, M., Rathgeber, C., and Falkowski, P. G. (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292: 2492–2495.

22 Liberton, M., Austin, J. R., Berg, R. H., and Pakrasi, H. B. (2011) Unique thylakoid membrane architecture of a unicellular N‐2‐fixing cyanobacterium revealed by electron tomography. Plant Physiology 155: 1656–1666.

23 Liu, D., Zhang, J., Lu, C., Xia, Y., Liu, H., Jiao, N., Xun, L., and Liu, J. (2020) Synechococcus sp. strain PCC7002 uses sulfide: Quinone oxidoreductase to detoxify exogenous sulfide and to convert endogenous sulfide to cellular sulfane sulfur. MBio 11: e03420‐19.

24 Madigan, M. T. (2006) The family Heliobacteriaceae. In: M. Dworkin, S. Falkow, E. Rosenberg, K.‐H. Schliefer and E. Stackebrandt, (eds.) The Prokaryotes, 3rd Edn. Berlin: Springer‐Verlag, pp. 951–964.

25 Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., and Stahl, D. (2017) Brock Biology of Microorganisms, 15th Edn. San Francisco: Pearson Benjamin Cummings.

26 Margulis, L. (1993) Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons. San Francisco: W. H. Freeman.

27 Matthijs, H. C. P., van der Staay, G. W. M., and Mur, L. R. (1994) Prochorophytes: The ‘other’ cyanobacteria. In: D. Bryant, (ed.) The Molecular Biology of Cyanobacteria. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 49–64.

28 van de Meene, A. M. L., Hohmann‐Marriott, M. F., Vermaas, W. F. J., and Roberson, R. W. (2006) The three‐dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Archives of Microbiology 184: 259–270.

29 Miyashita, H., Ikemoto, H., Kurano, N., Ikemoto, H., Chihara, M., and Miyachi, S. (1996) Chlorophyll d as a major pigment. Nature 383: 402.

30 Nelson, D. L. and Cox, M. M. (2017) Lehninger Principles of Biochemistry, 7th Edn. New York: W. H. Freeman.

31 Overmann, J. (2006) The family Chlorobiaceae. In: M. Dworkin, S. Falkow, E. Rosenberg, K.‐H. Schliefer, and E. Stackebrandt, (eds.) The Prokaryotes, 3rd Edn. Berlin: Springer‐Verlag, pp. 359–378.

32 Padan, E. (1979) Facultative anoxygenic photosynthesis in cyanobacteria. Annual Review of Plant Physiology 30: 27–40.

33 Palenik, B. and Haselkorn, R. (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b‐containing prokaryotes. Nature 355: 265–267.

34 Partensky, F., Hess, W. R., and Vaulot, D. (1999) Prochlorococcus: A marine photosynthetic prokaryote of global significance. Microbiology and Molecular Biology Reviews 63: 106–127.

35 Soucy, S. M., Huang, J., and Gogarten, J. P. (2015) Horizontal gene transfer: Building the web of life. Nature Reviews Genetics 16: 472–482.

36  Taiz, L., Zeiger, E., Møller, I. M., and Murphy, A. (2018) Fundamentals of Plant Physiology Sunderland. Sunderland, MA: Sinauer Associates.

37 Tang, K.‐H. and Blankenship, R. E. (2010) Both forward and reverse TCA cycles operate in green sulfur bacteria. Journal of Biological Chemistry 285: 35848–35854.

38 Thiel, V., Tank, M., and Bryant, D. A. (2018) Diversity of chlorophototrophic bacteria revealed in the ohmics era. Annual Review of Plant Biology 69: 21–49.

39 Thompson, A. W., Foster, R. A., Krupke, A., Carter, B. J., Musat, N., Vaulot, D., Kuypers, M. M. M., and Zehr, J. P. (2012) Unicellular cyanobacterium symbiotic with a single celled eukaryotic alga. Science 337: 1546–1550.

40 Tsuji, J. M., Shaw, N. A., Nagashima, S., Venkiteswaran, J. J., Schiff, S. L., Hanada, S., Tank, M., and Neufeld, J. D. (2020) Anoxygenic phototrophic Chloroflexota member uses a Type I reaction center. https://doi.org/10.1101/2020.07.07.190934

41 Tsukatani, Y., Romberger, S. P., Golbeck, J. H., and Bryant, D. A. (2012) Isolation and characterization of homodimeric type‐I reaction center complex from Candidatus Chloracidobacterium thermophilum, an aerobic chlorophototroph. Journal of Biological Chemistry 287: 5720–5732.

42 Urbach, E., Robertson, D. L., and Chisholm, S. W. (1992) Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355: 267–270.

43 Wolk, C. P., Ernst, A., and Elhai, J. (1994) Heterocyst metabolism and development. In: D. A. Bryant, (ed.) The Molecular Biology of Cyanobacteria. Dordrecht: Kluwer Academic Publishers, pp. 769–823.

44 Yurkov, V. V. and Beatty, J. T. (1998) Aerobic anoxygenic phototrophic bacteria. Microbiology and Molecular Biology Reviews 62: 695–724.

45 Zeng, Y., Feng, F., Medová, H., Dean, J., and Koblizek, M. (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proceedings of the National Academy of Sciences USA 111: 7795–7800.

Molecular Mechanisms of Photosynthesis

Подняться наверх