Читать книгу The Story of the Heavens - Robert S. Ball - Страница 6
THE ASTRONOMICAL OBSERVATORY.
ОглавлениеEarly Astronomical Observations—The Observatory of Tycho Brahe—The Pupil of the Eye—Vision of Faint Objects—The Telescope—The Object-Glass—Advantages of Large Telescopes—The Equatorial—The Observatory—The Power of a Telescope—Reflecting Telescopes—Lord Rosse's Great Reflector at Parsonstown—How the mighty Telescope is used—Instruments of Precision—The Meridian Circle—The Spider Lines—Delicacy of pointing a Telescope—Precautions necessary in making Observations—The Ideal Instrument and the Practical One—The Elimination of Error—Greenwich Observatory—The ordinary Opera-Glass as an Astronomical Instrument—The Great Bear—Counting the Stars in the Constellation—How to become an Observer.
The earliest rudiments of the Astronomical Observatory are as little known as the earliest discoveries in astronomy itself. Probably the first application of instrumental observation to the heavenly bodies consisted in the simple operation of measuring the shadow of a post cast by the sun at noonday. The variations in the length of this shadow enabled the primitive astronomers to investigate the apparent movements of the sun. But even in very early times special astronomical instruments were employed which possessed sufficient accuracy to add to the amount of astronomical knowledge, and displayed considerable ingenuity on the part of the designers.
Professor Newcomb[2] thus writes: "The leader was Tycho Brahe, who was born in 1546, three years after the death of Copernicus. His attention was first directed to the study of astronomy by an eclipse of the sun on August 21st, 1560, which was total in some parts of Europe. Astonished that such a phenomenon could be predicted, he devoted himself to a study of the methods of observation and calculation by which the prediction was made. In 1576 the King of Denmark founded the celebrated observatory of Uraniborg, at which Tycho spent twenty years assiduously engaged in observations of the positions of the heavenly bodies with the best instruments that could then be made. This was just before the invention of the telescope, so that the astronomer could not avail himself of that powerful instrument. Consequently, his observations were superseded by the improved ones of the centuries following, and their celebrity and importance are principally due to their having afforded Kepler the means of discovering his celebrated laws of planetary motion."
The direction of the telescope to the skies by Galileo gave a wonderful impulse to the study of the heavenly bodies. This extraordinary man is prominent in the history of astronomy, not alone for his connection with this supreme invention, but also for his achievements in the more abstract parts of astronomy. He was born at Pisa in 1564, and in 1609 the first telescope used for astronomical observation was constructed. Galileo died in 1642, the year in which Newton was born. It was Galileo who laid with solidity the foundations of that science of Dynamics, of which astronomy is the most splendid illustration; and it was he who, by promulgating the doctrines taught by Copernicus, incurred the wrath of the Inquisition.
The structure of the human eye in so far as the exquisite adaptation of the pupil is concerned presents us with an apt illustration of the principle of the telescope. To see an object, it is necessary that the light from it should enter the eye. The portal through which the light is admitted is the pupil. In daytime, when the light is brilliant, the iris decreases the size of the pupil, and thus prevents too much light from entering. At night, or whenever the light is scarce, the eye often requires to grasp all it can. The pupil then expands; more and more light is admitted according as the pupil grows larger. The illumination of the image on the retina is thus effectively controlled in accordance with the requirements of vision.
A star transmits to us its feeble rays of light, and from those rays the image is formed. Even with the most widely-opened pupil, it may, however, happen that the image is not bright enough to excite the sensation of vision. Here the telescope comes to our aid: it catches all the rays in a beam whose original dimensions were far too great to allow of its admission through the pupil. The action of the lenses concentrates those rays into a stream slender enough to pass through the small opening. We thus have the brightness of the image on the retina intensified. It is illuminated with nearly as much light as would be collected from the same object through a pupil as large as the great lenses of the telescope.
Fig. 1.—Principle of the Refracting Telescope.
In astronomical observatories we employ telescopes of two entirely different classes. The more familiar forms are those known as refractors, in which the operation of condensing the rays of light is conducted by refraction. The character of the refractor is shown in Fig. 1. The rays from the star fall upon the object-glass at the end of the telescope, and on passing through they become refracted into a converging beam, so that all intersect at the focus. Diverging from thence, the rays encounter the eye-piece, which has the effect of restoring them to parallelism. The large cylindrical beam which poured down on the object-glass has been thus condensed into a small one, which can enter the pupil. It should, however, be added that the composite nature of light requires a more complex form of object-glass than the simple lens here shown. In a refracting telescope we have to employ what is known as the achromatic combination, consisting of one lens of flint glass and one of crown glass, adjusted to suit each other with extreme care.
Fig. 2.—The Dome of the South Equatorial at Dunsink Observatory Co Dublin.
Fig. 3.—Section of the Dome of Dunsink Observatory.
The appearance of an astronomical observatory, designed to accommodate an instrument of moderate dimensions, is shown in the adjoining figures. The first (Fig. 2) represents the dome erected at Dunsink Observatory for the equatorial telescope, the object-glass of which was presented to the Board of Trinity College, Dublin, by the late Sir James South. The main part of the building is a cylindrical wall, on the top of which reposes a hemispherical roof. In this roof is a shutter, which can be opened so as to allow the telescope in the interior to obtain a view of the heavens. The dome is capable of revolving so that the opening may be turned towards that part of the sky where the object happens to be situated. The next view (Fig. 3) exhibits a section through the dome, showing the machinery by which the attendant causes it to revolve, as well as the telescope itself. The eye of the observer is placed at the eye-piece, and he is represented in the act of turning a handle, which has the power of slowly moving the telescope, in order to adjust the instrument accurately on the celestial body which it is desired to observe. The two lenses which together form the object-glass of this instrument are twelve inches in diameter, and the quality of the telescope mainly depends on the accuracy with which these lenses have been wrought. The eye-piece is a comparatively simple matter. It consists merely of one or two small lenses; and various eye-pieces can be employed, according to the magnifying power which may be desired. It is to be observed that for many purposes of astronomy high magnifying powers are not desirable. There is a limit, too, beyond which the magnification cannot be carried with advantage. The object-glass can only collect a certain quantity of light from the star; and if the magnifying power be too great, this limited amount of light will be thinly dispersed over too large a surface, and the result will be found unsatisfactory. The unsteadiness of the atmosphere still further limits the extent to which the image may be advantageously magnified, for every increase of power increases in the same degree the atmospheric disturbance.
A telescope mounted in the manner here shown is called an equatorial. The convenience of this peculiar style of supporting the instrument consists in the ease with which the telescope can be moved so as to follow a star in its apparent journey across the sky. The necessary movements of the tube are given by clockwork driven by a weight, so that, once the instrument has been correctly pointed, the star will remain in the observer's field of view, and the effect of the apparent diurnal movement will be neutralised. The last refinement in this direction is the application of an electrical arrangement by which the driving of the instrument is controlled from the standard clock of the observatory.
Fig. 4.—The Telescope at Yerkes Observatory, Chicago. (From the Astrophysical Journal, Vol. vi., No. 1.)
The power of a refracting telescope—so far as the expression has any definite meaning—is to be measured by the diameter of its object-glass. There has, indeed, been some honourable rivalry between the various civilised nations as to which should possess the greatest refracting telescope. Among the notable instruments that have been successfully completed is that erected in 1881 by Sir Howard Grubb, of Dublin, at the splendid observatory at Vienna. Its dimensions may be estimated from the fact that the object-glass is two feet and three inches in diameter. Many ingenious contrivances help to lessen the inconvenience incident to the use of an instrument possessing such vast proportions. Among them we may here notice the method by which the graduated circles attached to the telescope are brought within view of the observer. These circles are necessarily situated at parts of the instrument which lie remote from the eye-piece where the observer is stationed. The delicate marks and figures are, however, easily read from a distance by a small auxiliary telescope, which, by suitable reflectors, conducts the rays of light from the circles to the eye of the observer.
Fig. 5.—Principle of Herschel's Refracting Telescope.
Numerous refracting telescopes of exquisite perfection have been produced by Messrs. Alvan Clark, of Cambridgeport, Boston, Mass. One of their most famous telescopes is the great Lick Refractor now in use on Mount Hamilton in California. The diameter of this object-glass is thirty-six inches, and its focal length is fifty-six feet two inches. A still greater effort has recently been made by the same firm in the refractor of forty inches aperture for the Yerkes Observatory of the University of Chicago. The telescope, which is seventy-five feet in length, is mounted under a revolving dome ninety feet in diameter, and in order to enable the observer to reach the eye-piece without using very large step-ladders, the floor of the room can be raised and lowered through a range of twenty-two feet by electric motors. This is shown in Fig. 4, while the south front of the Yerkes Observatory is represented in Fig. 6.
Fig. 6.—South Front of the Yerkes Observatory, Chicago. (From the Astrophysical Journal, Vol. vi., No. 1.)
Fig. 7.—Lord Rosse's Telescope.
Within the last few years two fine telescopes have been added to the instrumental equipment of the Royal Observatory, Greenwich, both by Sir H. Grubb. One of these, containing a 28-inch object-glass, has been erected on a mounting originally constructed for a smaller instrument by Sir G. Airy. The other, presented by Sir Henry Thompson, is of 26 inches aperture, and is adapted for photographic work.
There is a limit to the size of the refractor depending upon the material of the object-glass. Glass manufacturers seem to experience unusual difficulties in their attempts to form large discs of optical glass pure enough and uniform enough to be suitable for telescopes. These difficulties are enhanced with every increase in the size of the discs, so that the cost has a tendency to increase at a very much greater rate. It may be mentioned in illustration that the price paid for the object-glass of the Lick telescope exceeded ten thousand pounds.
There is, however, an alternative method of constructing a telescope, in which the difficulty we have just mentioned does not arise. The principle of the simplest form of reflector is shown in Fig. 5, which represents what is called the Herschelian instrument. The rays of light from the star under observation fall on a mirror which is both carefully shaped and highly polished. After reflection, the rays proceed to a focus, and diverging from thence, fall on the eye-piece, by which they are restored to parallelism, and thus become adapted for reception in the eye. It was essentially on this principle (though with a secondary flat mirror at the upper end of the tube reflecting the rays at a right angle to the side of the tube, where the eye-piece is placed) that Sir Isaac Newton constructed the little reflecting telescope which is now treasured by the Royal Society. A famous instrument of the Newtonian type was built, half a century ago, by the late Earl of Rosse, at Parsonstown. It is represented in Fig. 7. The colossal aperture of this instrument has never been surpassed; it has, indeed, never been rivalled. The mirror or speculum, as it is often called, is a thick metallic disc, composed of a mixture of two parts of copper with one of tin. This alloy is so hard and brittle as to make the necessary mechanical operations difficult to manage. The material admits, however, of a brilliant polish, and of receiving and retaining an accurate figure. The Rosse speculum—six feet in diameter and three tons in weight—reposes at the lower end of a telescope fifty-five feet long. The tube is suspended between two massive castellated walls, which form an imposing feature on the lawn at Birr Castle. This instrument cannot be turned about towards every part of the sky, like the equatorials we have recently been considering. The great tube is only capable of elevation in altitude along the meridian, and of a small lateral movement east and west of the meridian. Every star or nebula visible in the latitude of Parsonstown (except those very near the pole) can, however, be observed in the great telescope, if looked for at the right time.
Fig. 8.—Meridian Circle.
Before the object reaches the meridian, the telescope must be adjusted at the right elevation. The necessary power is transmitted by a chain from a winch at the northern end of the walls to a point near the upper end of the tube. By this contrivance the telescope can be raised or lowered, and an ingenious system of counterpoises renders the movement equally easy at all altitudes. The observer then takes his station in one of the galleries which give access to the eye-piece; and when the right moment has arrived, the star enters the field of view. Powerful mechanism drives the great instrument, so as to counteract the diurnal movement, and thus the observer can retain the object in view until he has made his measurements or finished his drawing.
Of late years reflecting telescopes have been generally made with mirrors of glass covered with a thin film of silver, which is capable of reflecting much more light than the surface of a metallic mirror. Among great reflectors of this kind we may mention two, of three and five feet aperture respectively, with which Dr. Common has done valuable work.
We must not, however, assume that for the general work in an observatory a colossal instrument is the most suitable. The mighty reflector, or refractor, is chiefly of use where unusually faint objects are being examined. For work in which accurate measurements are made of objects not particularly difficult to see, telescopes of smaller dimensions are more suitable. The fundamental facts about the heavenly bodies have been chiefly learned from observations obtained with instruments of moderate optical power, specially furnished so as to enable precise measures of position to be secured. Indeed, in the early stages of astronomy, important determinations of position were effected by contrivances which showed the direction of the object without any telescopic aid.
Perhaps the most valuable measurements obtained in our modern observatories are yielded by that instrument of precision known as the meridian circle. It is impossible, in any adequate account of the Story of the Heavens, to avoid some reference to this indispensable aid to astronomical research, and therefore we shall give a brief account of one of its simpler forms, choosing for this purpose a great instrument in the Paris Observatory, which is represented in Fig. 8.
The telescope is attached at its centre to an axis at right angles to its length. Pivots at each extremity of this axis rotate upon fixed bearings, so that the movements of the telescope are completely restricted to the plane of the meridian. Inside the eye-piece of the telescope extremely fine vertical fibres are stretched. The observer watches the moon, or star, or planet enter the field of view; and he notes by the clock the exact time, to the fraction of a second, at which the object passes over each of the lines. A silver band on the circle attached to the axis is divided into degrees and subdivisions of a degree, and as this circle moves with the telescope, the elevation at which the instrument is pointed will be indicated. For reading the delicately engraved marks and figures on the silver, microscopes are necessary. These are shown in the sketch, each one being fixed into an aperture in the wall which supports one end of the instrument. At the opposite side is a lamp, the light from which passes through the perforated axis of the pivot, and is thence ingeniously deflected by mirrors so as to provide the requisite illumination for the lines at the focus.
The fibres which the observer sees stretched over the field of view of the telescope demand a few words of explanation. We require for this purpose a material which shall be very fine and fairly durable, as well as somewhat elastic, and of no appreciable weight. These conditions cannot be completely fulfilled by any metallic wire, but they are exquisitely realised in the beautiful thread which is spun by the spider. The delicate fibres are stretched with nice skill across the field of view of the telescope, and cemented in their proper places. With instruments so beautifully appointed we can understand the precision attained in modern observations. The telescope is directed towards a star, and the image of the star is a minute point of light. When that point coincides with the intersection of the two central spider lines the telescope is properly sighted. We use the word sighted designedly, because we wish to suggest a comparison between the sighting of a rifle at the target and the sighting of a telescope at a star. Instead of the ordinary large bull's-eye, suppose that the target only consisted of a watch-dial, which, of course, the rifleman could not see at the distance of any ordinary range. But with the telescope of the meridian circle the watch-dial would be visible even at the distance of a mile. The meridian circle is indeed capable of such precision as a sighting instrument that it could be pointed separately to each of two stars which subtend at the eye an angle no greater than that subtended by an adjoining pair of the sixty minute dots around the circumference of a watch-dial a mile distant from the observer.
This power of directing the instrument so accurately would be of but little avail unless it were combined with arrangements by which, when once the telescope has been pointed correctly, the position of the star can be ascertained and recorded. One element in the determination of the position is secured by the astronomical clock, which gives the moment when the object crosses the central vertical wire; the other element is given by the graduated circle which reads the angular distance of the star from the zenith or point directly overhead.
Superb meridian instruments adorn our great observatories, and are nightly devoted to those measurements upon which the great truths of astronomy are mainly based. These instruments have been constructed with refined skill; but it is the duty of the painstaking astronomer to distrust the accuracy of his instrument in every conceivable way. The great tube may be as rigid a structure as mechanical engineers can produce; the graduations on the circle may have been engraved by the most perfect of dividing machines; but the conscientious astronomer will not be content with mere mechanical precision. That meridian circle which, to the uninitiated, seems a marvellous piece of workmanship, possessing almost illimitable accuracy, is viewed in a very different light by the astronomer who makes use of it. No one can appreciate more fully than he the skill of the artist who has made that meridian circle, and the beautiful contrivances for illumination and reading off which give to the instrument its perfection; but while the astronomer recognises the beauty of the actual machine he is using, he has always before his mind's eye an ideal instrument of absolute perfection, to which the actual meridian circle only makes an approximation.
Contrasted with the ideal instrument, the finest meridian circle is little more than a mass of imperfections. The ideal tube is perfectly rigid, the actual tube is flexible; the ideal divisions of the circle are perfectly uniform, the actual divisions are not uniform. The ideal instrument is a geometrical embodiment of perfect circles, perfect straight lines, and perfect right angles; the actual instrument can only show approximate circles, approximate straight lines, and approximate right angles. Perhaps the spider's part of the work is on the whole the best; the stretched web gives us the nearest mechanical approach to a perfectly straight line; but we mar the spider's work by not being able to insert those beautiful threads with perfect uniformity, while our attempts to adjust two of them across the field of view at right angles do not succeed in producing an angle of exactly ninety degrees.
Nor are the difficulties encountered by the meridian observer due solely to his instrument. He has to contend against his own imperfections; he has often to allow for personal peculiarities of an unexpected nature; the troubles that the atmosphere can give are notorious; while the levelling of his instrument warns him that he cannot even rely on the solid earth itself. We learn that the earthquakes, by which the solid ground is sometimes disturbed, are merely the more conspicuous instances of incessant small movements in the earth which every night in the year derange the delicate adjustment of the instrument.
When the existence of these errors has been recognised, the first great step has been taken. By an alliance between the astronomer and the mathematician it is possible to measure the discrepancies between the actual meridian circle and the instrument that is ideally perfect. Once this has been done, we can estimate the effect which the irregularities produce on the observations, and finally, we succeed in purging the observations from the grosser errors by which they are contaminated. We thus obtain results which are not indeed mathematically accurate, but are nevertheless close approximations to those which would be obtained by a perfect observer using an ideal instrument of geometrical accuracy, standing on an earth of absolute rigidity, and viewing the heavens without the intervention of the atmosphere.
In addition to instruments like those already indicated, astronomers have other means of following the motions of the heavenly bodies. Within the last fifteen years photography has commenced to play an important part in practical astronomy. This beautiful art can be utilised for representing many objects in the heavens by more faithful pictures than the pencil of even the most skilful draughtsman can produce. Photography is also applicable for making charts of any region in the sky which it is desired to examine. When repeated pictures of the same region are made from time to time, their comparison gives the means of ascertaining whether any star has moved during the interval. The amount and direction of this motion may be ascertained by a delicate measuring apparatus under which the photographic plate is placed.
If a refracting telescope is to be used for taking celestial photographs, the lenses of the object-glass must be specially designed for this purpose. The rays of light which imprint an image on the prepared plate are not exactly the same as those which are chiefly concerned in the production of the image on the retina of the human eye. A reflecting mirror, however, brings all the rays, both those which are chemically active and those which are solely visual, to one and the same focus. The same reflecting instrument may therefore be used either for looking at the heavens or for taking pictures on a photographic plate which has been substituted for the observer's eye.
A simple portrait camera has been advantageously employed for obtaining striking photographs of larger areas of the sky than can be grasped in a long telescope; but for purposes of accurate measurement those taken with the latter are incomparably better.
It is needless to say that the photographic apparatus, whatever it may be, must be driven by delicately-adjusted clockwork to counteract the apparent daily motion of the stars caused by the rotation of the earth. The picture would otherwise be spoiled, just as a portrait is ruined if the sitter does not remain quiet during the exposure.
Among the observatories in the United Kingdom the Royal Observatory at Greenwich is of course the most famous. It is specially remarkable among all the similar institutions in the world for the continuity of its labours for several generations. Greenwich Observatory was founded in 1675 for the promotion of astronomy and navigation, and the observations have from the first been specially arranged with the object of determining with the greatest accuracy the positions of the principal fixed stars, the sun, the moon, and the planets. In recent years, however, great developments of the work of the Observatory have been witnessed, and the most modern branches of the science are now assiduously pursued there.
The largest equatorial at Greenwich is a refractor of twenty-eight inches aperture and twenty-eight feet long, constructed by Sir Howard Grubb. A remarkable composite instrument from the same celebrated workshop has also been recently added to our national institution. It consists of a great refractor specially constructed for photography, of twenty-six inches aperture (presented by Sir Henry Thompson) and a reflector of thirty inches diameter, which is the product of Dr. Common's skill. The huge volume published annually bears witness to the assiduity with which the Astronomer Royal and his numerous staff of assistant astronomers make use of the splendid means at their disposal.
The southern part of the heavens, most of which cannot be seen in this country, is watched from various observatories in the southern hemisphere. Foremost among them is the Royal Observatory at the Cape of Good Hope, which is furnished with first-class instruments. We may mention a great photographic telescope, the gift of Mr. M'Clean. Astronomy has been greatly enriched by the many researches made by Dr. Gill, the director of the Cape Observatory.
Fig. 9.—The Great Bear.
It is not, however, necessary to use such great instruments to obtain some idea of the aid the telescope will afford. The most suitable instrument for commencing astronomical studies is within ordinary reach. It is the well-known binocular that a captain uses on board ship; or if that cannot be had, then the common opera-glass will answer nearly as well. This is, no doubt, not so powerful as a telescope, but it has some compensating advantages. The opera-glass will enable us to survey a large region of the sky at one glance, while a telescope, generally speaking, presents a much smaller field of view.
Let us suppose that the observer is provided with an opera-glass and is about to commence his astronomical studies. The first step is to become acquainted with the conspicuous group of seven stars represented in Fig. 9. This group is often called the Plough, or Charles's Wain, but astronomers prefer to regard it as a portion of the constellation of the Great Bear (Ursa Major). There are many features of interest in this constellation, and the beginner should learn as soon as possible to identify the seven stars which compose it. Of these the two marked α and β, at the head of the Bear, are generally called the "pointers." They are of special use, because they serve to guide the eye to that most important star in the whole sky, known as the "pole star."
Fix the attention on that region in the Great Bear, which forms a sort of rectangle, of which the stars α β γ δ are the corners. The next fine night try to count how many stars are visible within that rectangle. On a very fine night, without a moon, perhaps a dozen might be perceived, or even more, according to the keenness of the eyesight. But when the opera-glass is directed to the same part of the constellation an astonishing sight is witnessed. A hundred stars can now be seen with the greatest ease.
But the opera-glass will not show nearly all the stars in this region. Any good telescope will reveal many hundreds too faint for the feebler instrument. The greater the telescope the more numerous the stars: so that seen through one of the colossal instruments the number would have to be reckoned in thousands.
We have chosen the Great Bear because it is more generally known than any other constellation. But the Great Bear is not exceptionally rich in stars. To tell the number of the stars is a task which no man has accomplished; but various estimates have been made. Our great telescopes can probably show at least 50,000,000 stars.
The student who uses a good refracting telescope, having an object-glass not less than three inches in diameter, will find occupation for many a fine evening. It will greatly increase the interest of his work if he have the charming handbook of the heavens known as Webb's "Celestial Objects for Common Telescopes."