Читать книгу Experimental Mechanics - Robert S. Ball - Страница 17
THE JIB AND TIE ROD.
Оглавление38. As an illustration of the nature of the “tie” and “strut,” and also for the purpose of giving a useful example of the decomposition of forces, I use the apparatus of Fig. 17 (see next page).
It represents the principle of the framework in the common lifting crane, and has numerous applications in practical mechanics. A rod of wood b c 3' 6" long and 1" × 1" section is capable of turning round its support at the bottom b by means of a joint or hinge: this rod is called the “jib”; it is held at its upper end by a tie a c 3' long, which is attached to the support above the joint. a b is one foot long. From the point c a wire descends, having a hook at the end on which a weight can be hung. The tie is attached to the spring balance, the index of which shows the strain. The spring balance is secured by a wire-strainer, by turning the nut of which the length of the wire can be shortened or lengthened as occasion requires. This is necessary, because when different weights are suspended from the hook the spring is stretched more or less, and the screw is then employed to keep the entire length of the tie at 3'. The remainder of the tie consists of copper wire.
39. Suppose a weight of 20 lbs. be suspended from the hook w, it endeavours to pull the top of the jib downwards; but the tie holds it back, consequently the tie is put into a state of tension, as indeed its name signifies, and the magnitude of that tension is shown to be 60 lbs. by the spring balance. Here we find again what we have already so often referred to; namely, one force developing another force that is greater than itself, for the strain along the tie is three times as great as the strain in the vertical wire by which it was produced.
Fig. 17.
40. What is the condition of the jib? It is evidently being pushed downwards on its joint at b; it is therefore in a state of compression; it is a strut. This will be evident if we think for a moment how absurd it would be to endeavour to replace the jib by a string or chain: the whole arrangement would collapse. The weight of 20 lbs. is therefore decomposed by this contrivance into two other forces, one of which is resisted by a tie and the other by a strut.
Fig. 18.
41. We have no means of showing the magnitude of the strain along the strut, but we shall prove that it can be computed by means of the parallelogram of force; this will also explain how it is that the tie is strained by a force three times that of the weight which is used. Through c (Fig. 18) draw c p parallel to the tie a b, and p q parallel to the strut c b then b p is the diagonal of the parallelogram whose sides are each equal to b c and b q. If therefore we consider the force of 20 lbs. to be represented by b p, the two forces into which it is decomposed will be shown by b q and b c; but a b is equal to b q, since each of them is equal to c p; also b p is equal to a c. Hence the weight of 20 lbs. being represented by a c, the strain along the tie will be represented by the length a b, and that along the strut by the length b c. Remembering that a b is 3' long, c b 3' 6", and a c 1', it follows that the strain along the tie is 60 lbs., and along the strut 70 lbs., when the weight of 20 lbs. is suspended from the hook.
42. In every other case the strains along the tie and strut can be determined, when the suspended weight is known, by their proportionality to the sides of the triangle formed by the tie, the jib, and the upright post, respectively.
43. In this contrivance you will recognize, no doubt, the framework of the common lifting crane, but that very essential portion of the crane which provides for the raising and lowering is not shown here. To this we shall return again in a subsequent lecture (Art. 332). You will of course understand that the tie rod we have been considering is entirely different from the chain for raising the load.
44. It is easy to see of what importance to the engineer the information acquired by means of the decomposition of forces may become. Thus in the simple case with which we are at present engaged, suppose an engineer were required to erect a frame which was to sustain a weight of 10 tons, let us see how he would be enabled to determine the strength of the tie and jib. It is of importance in designing any structure not to make any part unnecessarily strong, as doing so involves a waste of valuable material, but it is of still more vital importance to make every part strong enough to avoid the risk of accident, not only under ordinary circumstances, but also under the exceptionally great shocks and strains to which every machine is liable.
45. According to the numerical proportions we have employed for illustration, the strain along the tie rod would be 30 tons when the load was 10 tons, and therefore the tie must at least be strong enough to bear a pull of 30 tons; but it is customary, in good engineering practice, to make the machine of about ten times the strength that would just be sufficient to sustain the ordinary load. Hence the crank must be so strong that the tie would not break with a tension less than 300 tons, which would be produced when the crane was lifting 100 tons. So great a margin of safety is necessary on account of the jerks and other occasional great strains that arise in the raising and the lowering of heavy weights. For a crane intended to raise 10 tons, the engineer must therefore design a tie rod which not less than 300 tons would tear asunder. It has been proved by actual trial that a rod of wrought iron of average quality, one square inch in section, can just withstand a pull of twenty tons. Hence fifteen such rods, or one rod the section of which was equal to fifteen square inches, would be just able to resist 300 tons; and this is therefore the proper area of section for the tie rod of the crane we have been considering.
46. In the same way we ascertain the actual thrust down the jib; it amounts to 35 tons, and the jib should be ten times as strong as a strut which would collapse under a strain of 35 tons.
47. It is easy to see from the figure that the tie rod is pulling the upright, and tending, in fact, to make it snap off near b. It is therefore necessary that the upright support a b (Fig. 17) be secured very firmly.