Читать книгу Питание спортсменов. Рекомендации для практического применения (на примере футбола) - С. А. Парастаев - Страница 5

Глава 2
Современные подходы к питанию спортсменов: теоретические основы и прикладные аспекты
2.1. Метаболизм энергии при занятиях спортом (на примере футбола)

Оглавление

Постулированный в разделе 1.2 баланс педагогических способов подготовки спортсменов и их нутритивной поддержки в процессе достижения (и, особенно, сохранения) целевого уровня спортивной результативности предполагает соответствие технологических уровней их обеспечения.

С одной стороны, только рационально структурированное насыщение тренировочного процесса создает предпосылки к эффективному развитию необходимых двигательных качеств; применительно к футболу это прежде всего – выносливость (как общая, так и специальная), скорость и сила. Для этого в подготовительном периоде, состоящем из четырех микроциклов – втягивающего, развивающего, ударного и восстановительного, структурные элементы тренировок футболистов должны варьироваться в определенных пропорциях, соответствующих каждому из микроциклов: развитие выносливости – 60–70 %, быстроты и скоростных способностей – 5–15 %, силы и скоростно-силовых способностей – 20–30 % (Белаид Моджахед, 2016 [13]).

С другой стороны, успешная реализация тренировочных и соревновательных сессий требует высокоэнергетического покрытия: средние потери за матч, по данным ФИФА, составляют 1800 кКал [FIFA, 2010], при диапазоне колебаний от 1500 до 2000 кКал[7] (Моджахед Б., Китманов В.А., 2014 [14]). К слову, это лишь немногим уступает затратам энергии на преодоление марафонской дистанции – 2150–2580 кКал (без учета финишного спурта) (SCF EC, 2001[15]), протяженность которой (42 км 195 м) практически в 4 раза больше, чем пробегают игроки высокого класса за матч. Утилизация энергии при игре в футбол происходит в достаточно высоком темпе – 0,18 кКал на килограмм массы тела в минуту (Briggs M.C. et al., 2017 [16]; Moore D.R., 2015 [17]), что обусловлено достаточно продолжительным нахождением игроков в зоне субмаксимальных и максимальных нагрузок – порядка 30 % игрового времени (FIFA, 2010 [1]). При этом результаты функционального тестирования футболистов второй и премьер-лиги показали, что существенные различия имеются только по показателю потребления кислорода на уровне анаэробного порога (Слуцкий Л.В., 2009 [18]).

И здесь настало время провести некоторые сопоставления между «большим» футболом или, как его называют в некоторых странах, – соккер, с одной стороны, а с другой – футзалом AMF и мини-футболом/футзалом FIFA. Это нужно для понимания вопроса о возможности экстраполяции правил по питанию и потреблению жидкости в соккере в эти два самостоятельных, во всяком случае с организационно-правовой точки зрения, вида спорта. Иными словами: нам надо попытаться выяснить, чего больше – сходства или отличий по характеру нагрузок и типу их энергетического обеспечения между «большим» футболом и футзалом АМФ/ФИФА?

В целом, несмотря на довольно заметные отличия игры на большой и маленькой площадках ее сущность едина.

Так, футзал в обоих его формализованных проявлениях – это невероятное многообразие комбинационных действий, быстрая сменяемость игровых ситуаций и высокие скорости передвижения игроков и мяча на относительно малом пространстве (Левин В.С., 1996 [19]). При этом С.Н. Петько (2002) [20], детально охарактеризовавший структуру, величину и направленность соревновательных нагрузок в мини-футболе, отметил, что команды, как правило, проводят за игру от 83 до 114 атак, результативность которых составляет 18 %.

Кроме того, мини-футбол и футзал превосходят соккер и по количеству технико-тактических действий. Как уже было отмечено, каждый из находящихся на поле игроков в «большой» футбол за 90 мин матча совершает от 150 до 250 действий; если же усреднить данные А.Е. Бабкина (2004) [21] об игре национальной сборной по мини-футболу (1094 действия), то это более 200 действий за 40 мин пребывания на площадке. При допущении, что каждая из команд-соперниц владеет мячом около 20 мин, получается примерно 1 технико-тактическое действие в 2,2 секунды!

При этом удалось проследить одну весьма интересную тенденцию: команды топ-уровня в мини-футболе отличаются от любительских не столько по количеству технико-тактических действий, сколько по степени преобладания доли сложных действий над простыми. Простые включают передачи и остановки мяча, удары по воротам, поиск позиции, а сложные – это замах и ведение, обводка, опережение, пас верхом, удар головой и другие. И чем выше мастерство команды, тем реже ее игроки наносят удары по воротам; это связано с более тщательной подготовкой атакующих действий. То есть можно констатировать первую сходную позицию: уровень игры в футзале ФИФА обеспечивается, как и в соккере, не объемом проделанной работы, а уровнем ее организации…

И еще один момент: на протяжении игры в мини-футбол и футзал частота сердечных сокращений варьируется в диапазоне от 165 до 195 в мин, что соответствует вкладу каждого из механизмов обеспечения энергией: 27,5 % игрового времени спортсмены функционируют в аэробном режиме работы, 57 % – в смешанном аэробно-анаэробном режиме и 15 % – в анаэробном; при этом в смешанной зоне преобладает интенсивность потребления кислорода на уровне 80–93 % от максимальных значений – 42 % времени, а на уровне 66–79 % кислородного максимума – 15 %. На первый взгляд, складывается впечатление, что длительность интенсивных нагрузок в футзале выше, чем в соккере, но, если перевести процентные величины в абсолютные (с учетом разной продолжительности матчей), то временные характеристики сближаются. Иначе говоря, сущность и футзала, и «большого» футбола определяют субмаксимальные нагрузки со смешанным аэробно-анаэробным обеспечением, характеризующимся крайне неэкономным расходованием углеводов.

Результатом преобладающего нахождения футболистов в этой зоне является тот факт, что суммарные потери энергии игроками высокого класса в определенные периоды годичного цикла подготовки могут достигать 65–70 кКал/кг массы тела в сутки (Путро Л., 2012 [22]); естественно, этим значениям должен соответствовать и уровень потребления. Так, согласно литературным данным, полученным при работе со шведскими футболистами, общая калорийность питания с учетом индивидуальной физической активности и веса атлетов – не менее 4800 кКал в день (Bangsbo J, 2000 [23]). Однако публикуются и иные данные – о значительно меньшем суточном потреблении энергии (44 кКал/кг) (Briggs, M., 2015 [24]) и, соответственно, о дефицитности рациона в 15 % (Путро Л., 2012 [22]).

Определить точные значения энергетических потерь позволяют портативные метаболографы[8], которые характеризуют интенсивность обмена веществ не только в состоянии покоя, но и в нагрузке, причем, как на испытательном стенде, так и в «полевых» условиях – во время тренировок игровой направленности. Необходимость указанных измерений обусловлена прежде всего специфичностью нагрузок (меняющихся и по интенсивности, и по продолжительности), а также различиями, связанными с амплуа игроков. Например, по данным Л.В. Слуцкого, наиболее высокий объем работы в ходе матча выполняют полузащитники[9], причем вариативность индивидуальных значений параметра находится в очень узком коридоре – 6–10 % (Слуцкий Л.В., 2009 [18]).

В любом случае, характер нагрузок в футболе предполагает ведущую роль мышечного гликогена в обеспечении физической активности игроков. Показано, что запас гликогена истощается у футболистов примерно за 90 минут игры, что на последних минутах матча делает проблематичными «взрывные» действия, которые невозможны за счет поступления энергии вследствие окисления жиров; эта проблема в меньшей степени актуальна для игроков, находящихся в хорошей спортивной форме (Ashbaugh A. et al, 2016 [26]). Надо отметить, что в футболе к снижению эффективности скоростной работы может привести дефицит мышечного гликогена даже в отдельных волокнах (FIFA, 2010 [1]).

С учетом этого футболистам следует рекомендовать рационы с повышенным содержанием углеводов не только в дни матчей, но и в иные дни, поскольку в ходе тренировочных занятий также расходуется значительное количество углеводных запасов. Показано, что рацион, обеспечивающий суточное поступление 7,9 г углеводов на килограмм массы тела в день (суммарно – 600 г), более адекватен выполнению продолжительных нагрузок переменного характера, нежели потребление 4,6 г/кг (т. е. 355 г углеводов) (Bangsbo J. et al., 1991 [27]).

Потребление углеводов особенно показано в ходе истощающих нагрузок, когда депо гликогена практически опустошены; организм начинает использовать поступившие извне углеводы, а не переключается на более «медленные» жиры. Тем самым удается отложить или даже совсем избежать снижения эффективности действий футболиста во время игры (Burke L.M. et al., 2006 [28]).

Необходимо также отметить еще один немаловажный нюанс: во время пауз или игровых эпизодов с низкой двигательной активностью экзогенные углеводы идут на ресинтез мышечного гликогена; в эти же моменты восстанавливается и уровень креатинфосфата (Yvert T., и соавт., 2016 [29]).

Таким образом, высокий уровень метаболических превращений, обеспечивающих возможность реализации широкого арсенала технико-тактических действий, предъявляют чрезвычайно высокие требования как к игрокам (Mohr M. et al., 2005 [30]), так и к организации и насыщению их нутритивной поддержки, которая должна осуществляться с учетом специфичности двигательных навыков.

Но какими соображениями руководствоваться при определении калорийности рациона и его состава? Каким энергетическим субстратам следует отдавать предпочтение при столь значительных затратах?

Это лишь малая часть вопросов, которые на сегодня, по мнению James Morton и Graeme Close (2015), рассматриваются как наиболее актуальные [31]. Для обоснованного ответа на них требуется понимание закономерностей, определяющих течение обменных процессов. В минимально достаточном объеме необходимые для этого сведения представлены в Приложении 1: «Общие сведения об обмене веществ в организме».

Но прежде всего надо осознать следующую позицию: каждый этап годичного цикла подготовки подразумевает определенную специфику питания [Stellingwerf T., 2012]. И обеспечить эту специфику позволяет рациональное потребление именно специализированных продуктов питания (субстратных продуктов) и специальных диетических добавок на основе биологически активных субстанций (фармаконутриентов).

7

Столь существенный разброс определяется, в основном, влиянием двух переменных – преодолеваемой в ходе матча дистанцией и массой игроков.

8

В качестве обязательного требования к данной аппаратуре рассматривается наличие двух датчиков – кислородного и углекислотного.

9

Интересно, что более высокая активность на поле полузащитников предопределяет бóльшую эффективность тех игроков, которые обладают более «легким» телосложением, т. е. низким содержанием жира (Mujika I., Burke L.M. 2010 [25]).

Питание спортсменов. Рекомендации для практического применения (на примере футбола)

Подняться наверх