Читать книгу Цитология и гистология - С. М. Завалеева - Страница 3
2 Методы исследования
ОглавлениеСтроение, развитие и функции клеток, и органов можно познать, только применяя разнообразные методы исследования. Гистологический анализ включает в себя следующие главные этапы: выбор объекта исследования, подготовку его для изучения под микроскопом (приготовление гистологических препаратов), микроскопирование препаратов (одним или несколькими методами), качественный и количественный анализ микроскопической картины. Объектами исследования могут служить живые или мертвые (фиксированные) клетки, ткани органов или их изображения на экране дисплея.
Методы исследования мертвых (фиксированных) клеток и тканей. Основой методов служит гистологический препарат.
Приготовление гистологического препарата. Гистологический препарат (постоянный) является основным объектом исследования для морфолога и представляет собой срез ткани (от 5 до 60 мкм), заключенный между предметным стеклом (толщиной от 2 до 3 мм) и покровным (от 0,18 до 0,2 мм). Материалом для исследования служат кусочки органов, мазки крови или слизи, отпечатки органа или оболочки мозга, стенка мочевого пузыря, брыжейка и т.п. (тотальные препараты).
Процесс приготовления гистологического препарата состоит из следующих этапов: взятие и фиксирование материала; его уплотнение; приготовление срезов на микротоме; их окрашивание (контрастирование); заключение срезов в бальзам или синтетические смолы.
Взятие и фиксирование материала. Максимальные размеры кусочков составляют 1x1x0,5 см; соотношение объема материала и фиксирующей жидкости должно быть не менее 1:9. Взятый из органа образец ткани погружают в фиксатор – простой 70 – 96 %-й спирт, 10 – 12 %-й формалин, растворы уксусной кислоты, бихромата калия, осмиевой кислоты или сложный (смеси простых фиксирующих жидкостей или солей тяжелых металлов в определенных пропорциях, обеспечивающие рН и молярность, близкие к таковым в организме). Действие фиксаторов проявляется в том, что в тканях и органах, в результате сложных биофизических процессов, происходит необратимая коагуляция белков, жизнедеятельность прекращается, то есть клеточные структуры становятся мертвыми. Они теперь находятся в том функциональном состоянии, в котором их застигла смерть, то есть зафиксированными. Фиксация приводит к некоторому уплотнению и уменьшению объема образца.
Уплотнение образцов ткани. Цель этого этапа – достичь высокой плотности и пластичности материала для того, чтобы приготовить из него тонкие срезы. Применяют уплотняющие среды – парафин, целлоидин, желатин, органические смолы или замораживание. Пропитка парафином продолжается от 1 до 4 ч, целлоидином – до 1 – 3 нед. Кусочек ткани предварительно обезвоживают (проводят через спирты возрастающей концентрации); затем спирт вытесняют промежуточной средой, способной смешиваться со спиртом и одновременно растворять уплотняющее вещество. При использовании парафина промежуточной средой служат циклические углеводороды (бензол, ксилол) или хлороформ. Для того, чтобы избежать перепада температур (парафин плавится при 60 °C) после вытеснения спирта ксилолом, образец выдерживают от 2 до 3 ч в смеси парафина с ксилолом при температуре 38 °C. Из уплотненного парафином образца вырезают блоки, из которых и готовят тонкие срезы, способные пропускать свет (что является необходимым условием для световой микроскопии). Наиболее тонкие срезы (толщиной от 5 до 7 мкм) удается изготовить из материала, залитого в парафин. Из образцов, уплотненных целлоидином, готовят срезы толщиной от 10 до 30 мкм. Срезы получают на санных или ротационных микротомах; для экспресс-диагностики (срезы толщиной от 40 до 60 мкм) – на замораживающем микротоме.
Окрашивание срезов. Срезы окрашивают, чтобы увеличить контрастность различных гистологических структур в препаратах, предназначенных для исследования в световом микроскопе. Разработаны разнообразные методы окраски. В процессе окрашивания происходят сложные химические и физические процессы, поэтому при выборе метода учитывают избирательное сродство структур клетки к определенным красителям с разными физико-химическими свойствами.
Все красители подразделяют на кислые, основные и специальные. Структуры срезов, хорошо окрашивающиеся кислыми красителями, называют оксифильными, основными красителями – базофильными окрашивающиеся как теми, так и другими – нейтрофильными. Специальные красители селективно выявляют конкретные структуры, обладающие сродством к ним. Наиболее широко распространен комбинированный метод окраски тканей – гематоксилином и эозином. Гематоксилин (основной краситель) окрашивает ядра клеток в синефиолетовый цвет, а эозин (кислый) – элементы цитоплазмы в розово-желтый. Окрашенные препараты обезвоживают в спиртах восходящей концентрации (50 %, 70 %, 96 %, 100 %), просветляют в ксилоле или некоторых маслах и затем каждый гистологический срез заключают между предметным и покровным стеклами в канадский бальзам или синтетические смолы. Готовый (постоянный) гистологический препарат можно хранить годами и использовать для микроскопирования.
Методы микроскопии. Основным инструментом для изучения гистологического препарата служит микроскоп – световой или электронный.
Световая микроскопия. С помощыо современных световых микроскопов (МБР-1 – микроскоп биологический рабочий, МБИ-1, МБИ-3 или МББИ – микроскоп бинокулярный биологический исследовательский, ЛЮМАМ и других) можно изучать на срезах строение клеток и тканей. Размер наименьшей структуры, которую можно увидеть в световом микроскопе, определяется наименьшим разрешающим расстоянием (d0). У современных микроскопов оно составляет около 0,2 мкм. Приближенно разрешение, или разрешающую способность, можно рассчитать по формуле:
d0=1/3λ, (1)
где λ – длина световой волны.
Для более точного расчета используют формулу, учитывающую конструкцию объектива:
где n – показатель преломления среды между препаратом и фронтальной линзой объектива;
sin α – синус угла между оптической осью и наиболее сильно отклоняющимся лучом, который еще попадает в линзу объектива.
В микроскопических исследованиях используют следующие единицы измерения:
– 1мкм (микрометр)=1×10-3 мм = 1×10-6 м;
– 1 нм (нанометр) = 1×10-3 мкм = 1×10-6 мм = = 1×10-9 м;
– 1 Å (ангстрем) = 0,1 нм = 1×10-4 мкм = 1×10-7 мм = 1×10-10 м.
Из приведенных данных видно, что разрешающая способность световых микроскопов ограничена десятыми долями микрона (микрометра). Структуры клетки меньшего размера можно рассмотреть только с помощью электронного микроскопа. Подробное описание светового и электронного микроскопов дано в соответствующих руководствах и в курсе физики.
Ультрафиолетовая микроскопия – представляет собой разновидность световой. Длина волны ультрафиолетовых лучей составляет около 0,3 мкм; разрешающая способность микроскопа при иммерсионном объективе приблизительно 0,1 мкм.
Люминесцентная микроскопия основана на том, что многие органические вещества, содержащиеся в клетках, способны светиться (флуоресцировать) при поглощении ими световой энергии. Спектр флуоресценции постоянно смещен в сторону более длинных волн по отношению к изучению, возбуждающему флуоресценцию. Этот спектр лежит в пределах коротких волн (длина от 0,25 до 0,4 мкм). Например, хлорофилл зеленых растений в ультрафиолетовых лучах светится красным светом, а другие вещества – зеленым или желтым (то есть с более короткими волнами). Этот принцип использован при создании люминесцентных микроскопов. Источником света в них служат ксеноновые или ртутные лампы (их спектр близок к ультрафиолетовому излучению), а объект исследуют через специальные фильтры.
Собственной, или первичной, флуоресценцией обладают пигменты (в том числе бактерий), витамины А и В2, индоламины и некоторые другие вещества. Существует вторичная, или вызванная, флуоресценция. Чтобы ее получить, используют специальные вещества – флуорохромы, которые связываются различными структурами живой клетки и вызывают их флуоресценцию. Например, при обработке срезов тканей флуорохромом акридиновым оранжевым дезоксирибонуклеиновая кислота (ДНК) и ее производные приобретают яркозеленое свечение, а рибонуклеиновая кислота (РНК) и ее производные – яркокрасное. Разновидностью вторичной является флюоресценция желто-зеленого цвета, индуцированная парами формальдегида и характерная для катехоламинов (адреналин и норадреналин) мозгового вещества надпочечников. Таким образом, можно исследовать химический состав тканевых структур, выявлять трофические и секреторные включения в клетках.
Электронная микроскопия. В электронном микроскопе используются электронные лучи с более короткими, чем в световом микроскопе, длинами волн при напряжениях от 50000 до 100000 В. Длина волны электромагнитных колебаний, возникающих при движении потока или пучка электронов в условиях вакуума равна 0,0056 нм. Таким образом, разрешение достигает 0,002 нм или 0,000002 мкм, что в 100000 раз выше, чем в световом микроскопе. Разрешающая способность современных отечественных электронных микроскопов (ЭМВ-200, 300) и зарубежных (фирм Хитачи, Филипс) составляет не более от 1 до 5 А, однако на практике она не превышает от 0,2 до 0,5 нм, а для большинства биологических объектов от 1 до 2 нм. Методом электронной микроскопии исследуют ультратонкие срезы, толщиной от 500 до 1000 А, которые готовят на ультратомах – сложных электронных приборах, где ножами служат очень острые грани сломов зеркального стекла. Тончайшие срезы наносят на специальные металлические сетки с ячейками и помещают в вакуумную камеру электронного микроскопа. Обработка образцов тканей для ЭМ сходна с ранее описанной обработкой для световой микроскопии. Только здесь в качестве фиксаторов используют забуференные растворы параформа, тетроксида осмия, глютаральдегида (рН 7,0 – 7,4); образцы проводят через спирты восходящей концентрации и пропилен-оксид и заливают в синтетические смолы (аралдит, эпон или в их смесь). Чтобы более четко выявить, органеллы мембранного и немембранного типа в качестве контрастера применяют цитрат свинца и уранилацетат.
К современным электронно-микроскопическим методам относят просвечивающую, или трансмиссионную электронную микроскопию (ПЭМ), сканирующую электронную микроскопию (СЭМ) электронную авторадиографию, иммунно-электронную микроскопию, ЭМ-гистохимию.
СЭМ от ПЭМ отличается тем, что в первом электроны не проходят сквозь объект, а отражаются от его поверхности, сканируя ее. Сфокусированный пучок электронов, формируемый электронно-магнитными линзами, следует через отклоняющую катушку, которая перемещает его по поверхности препарата, покрытого тонким слоем металла (золотое или платиновое напыление). С поверхности препарата пучком выбиваются вторичные электроны, которые регистрируются и преобразуются в трехмерное изображение на экране. В отличие от ПЭМ для СЭМ можно использовать коррозийные препараты: объект изучения, например микроциркуляторное русло лимфатических сосудов, заливают какимилибо затвердевающими веществами и после этого просматривают слепки и его поверхности. Изучают также реплики, получаемые путем замораживания – скалывания. В этом случае исследуют слепок скола поверхности объекта. Чтобы увеличить контрастность, реплики необходимо оттенить с помощыо напыления частиц металлов (золота, платины) или угля.
Методы качественного и количественного анализа гистологических структур. Качественные гистохимические методы основаны на использовании реакций, с помощыо которых выявляют различные химические вещества в клетках тканей и органов. Зная, как распределяются в тканях белки, жиры, углеводы, ферменты и другие вещества в норме и при различных воздействиях на организм, можно судить с большей или меньшей вероятностью направленности метаболических процессов в исследуемых структурах. Современными гистохимическими методами обнаруживают в клетках аминокислоты, белки, нуклеиновые кислоты, углеводы, липиды, определяют активность различных ферментов, например в цикле Кребса. Выявление этих веществ основано на специфичности реакций между химическим реактивом и субстратом, входящим в состав клеточных и тканевых структур, и на выделении продуктов химических реакций в виде окрашенных осадков. Чтобы повысить специфичность реакций, часто применяют метод ферментативного контроля. Например, для выявления ДНК и РНК используют галлоцианин – хромовые квасцы, окрашивающие нуклеиновые кислоты в стойкий сине-фиолетовый цвет. ДНК обнаруживают с помощыо реакции Фёльгена. Срезы подвергают кислотному гидролизу (1 н НСl при 60 °C), при этом освобождаются альдегидные группировки дезоксипентозы в ДНК. Затем срезы переносят в фуксинсернистую кислоту, которая взаимодействует только с альдегидными группировками хроматина, обусловливая его пурпурную окраску. Срезы, предварительно обработанные дезоксирибонуклеазой – ферментом, расщепляющим ДНК – не окрашиваются, что подтверждает наличие в структуре ДНК.
Методами иммуноцитохимии можно идентифицировать клетки различных типов и их рецепторы по маркерным признакам, изучать синтетические и секреторные процессы. Методы основаны на обработке срезов (или мазков) специфическими антителами к выявляемому веществу, которое служит антигеном. Антитела маркируют путем конъюгации с флуоресцентными красителями, ферментами, которые затем выявляются цитохимически или электронно-плотными частицами (ферритин).
С помощью количественных гистохимических методов изучают химический состав конкретных структур клетки.
Цитоспектрофотометрия – это метод количественного и качественного изучения веществ по спектру их поглощения в структурах отдельной клетки. С его помощью можно установить суммарное содержание белков или других элементов. В основе метода лежит принцип абсорбционной спектрофотометрии. Например, с помощыо интерферометрии можно оценить сухую массу и концентрацию плотных веществ в живой и фиксированной клетке.
Метод дифференциального центрифугирования основан на применении центрифуг, развивающих скорости от 20000 до 150000 мин и более. При центрифугировании в определенных условиях, например, в сахарозе в зависимости от градиента плотности, удается отделить и осадить различные органеллы клеток: ядра, митохондрии, фракции пиноцитозных и синаптических пузырьков, рибосом и других компонентов, пригодных для гистохимического исследования.
Метод авторадиографии широко применяют для изучения кинетики клеточных популяций, метаболических процессов в клетках, и определения участков синтеза биополимеров с помощью регистрации веществ, меченых изотопами. Для этого в ткань животного или в среду с культивируемыми клетками вводят предшественников какого-либо макромолекулярного соединения (например, аминокислоты, нуклеотиды), один из атомов которого замещен радиоактивным изотопом (например, радиоактивного водорода Н углерода – С14, серы, фосфора и других). В процессе синтеза белков, гормонов, ферментов или иных веществ в них включается молекула меченого предшественника. Для регистрации места ее включения в темноте на окрашенные обычными методами срезы наносят специальную мелкозернистую фотоэмульсию, после чего срезы проявляют. На участках соприкосновения фотоэмульсии с радиоактивным веществом происходит фотореакция, в результате которой образуются засвеченные участки – метки, или треки. Этим методом можно, например, определить время перемещения клеток, меченых Н3