Читать книгу EEG Signal Processing and Machine Learning - Saeid Sanei - Страница 82

References

Оглавление

1 1 Lebedev, M.A. and Nicolelis, M.A. (2006). Brain‐machine interfaces: past, present and future. Trends in Neurosciences 29: 536–546.

2 2 Lopes Da Silva, F. (2004). Functional localization of brain sources using EEG and/or MEG data: volume conductor and source models. Journal of Magnetic Resonance Imaging 22 (10): 1533–1538.

3 3 Durka, P.J., Dobieslaw, I., and Blinowska, K.J. (2001). Stochastic time–frequency dictionaries for matching pursuit. IEEE Transactions on Signal Processing 49 (3).

4 4 Spyrou, L., Lopez, D.M., Alarcon, G. et al. (2016). Detection of intracranial signatures of interictal epileptiform discharges from concurrent scalp EEG. International Journal of Neural Systems 26 (4): 1650016.

5 5 Spyrou, L., Kouchaki, S., and Sanei, S. (2016). Multiview classification and dimensionality reduction of EEG data through tensor factorisation. Journal of Signal Processing Systems 90: 273–284.

6 6 Spyrou, L. and Sanei, S. (2016). Coupled dictionary learning for multimodal data: an application to concurrent intracranial and scalp EEG. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2349–2353. Shanghai, China.

7 7 Antoniades, A., Spyrou, L., Martin‐Lopez, D. et al. (2018). Deep neural architectures for mapping scalp to intracranial EEG. International Journal of Neural Systems 28 (8): 1850009. https://doi.org/10.1142/S0129065718500090.

8 8 Antoniades, A., Spyrou, L., Martin‐Lopez, D. et al. (2017). Detection of interictal discharges using convolutional neural networks from multichannel intracranial EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering 25 (12): 2285–2294.

9 9 Strang, G. (1998). Linear Algebra and its Applications, 3e. Thomson Learning.

10 10 McCann, H., Pisano, G., and Beltrachini, L. (2019). Variation in reported human head tissue electrical conductivity values. Brain Topography 32: 825–858.

11 11 Hyvarinen, A., Kahunen, J., and Oja, E. (2001). Independent Component Analysis. Wiley.

12 12 Cover, T.M. and Thomas, J.A. (2001). Elements of Information Theory. Wiley.

13 13 Azami, H., Arnold, S.E., Sanei, S. et al. (2019). Multiscale fluctuation‐based dispersion entropy and its applications to neurological diseases. IEEE Access 7 (1): 68718–68733, ISSN: 2169‐3536. https://doi.org/10.1109/ACCESS.2019.2918560.

14 14 Morf, M., Vieria, A., Lee, D., and Kailath, T. (1978). Recursive multichannel maximum entropy spectral estimation. IEEE Transactions on Geoscience Electronics 16: 85–94.

15 15 Bro, R. (1998). Multi‐way analysis in the food industry: models, algorithms, and applications. PhD thesis. University of Amsterdam (NL) and Royal Veterinary and Agricultural University, MATLAB toolbox. http://www.models.kvl.dk/users/rasmus (accessed 19 August 2021).

16 16 Franaszczuk, P.J., Bergey, G.K., and Durka, P.J. (1996). Time–frequency analysis of mesial temporal lobe seizures using the matching pursuit algorithm. Society for Neuroscience – Abstracts 22: 184.

17 17 Murenzi, R., Combes, J.M., Grossman, A., and Tchmitchian, P. (eds.) (1988). Wavelets. Heidelberg, New York: Springer Berlin.

18 18 Vaidyanathan, P.P. (1993). Multirate Systems and Filter Banks. Prentice Hall.

19 19 Holschneider, M., Kronland‐Martinet, R., Morlet, R.J., and Tchamitchian, P. (1989). A real‐time algorithm for signal analysis with the help of the wavelet transform. In: Wavelets: Time‐Frequency Methods and Phase Space (eds. J.M. Combes, A. Grossman and P. Tchamitchian), 286–297. Berlin: Springer‐Verlag.

20 20 Chui, C.K. (1992). An Introduction to Wavelets. Academic Press.

21 21 Stein, E.M. (1958). On the functions of Littlewood‐Paley, Lusin and Marcinkiewicz. Transactions of the American Mathematical Society 88: 430–466.

22 22 Vetterli, M. and Kovačevic, J. (1995). Wavelets and Subband Coding. Prentice Hall.

23 23 Daubechies, I., Lu, J., and Wu, H. (2011). Synchro‐squeezed wavelet transforms: an empirical mode decomposition‐like tool. Applied and Computational Harmonic Analysis 30 (2): 243–261.

24 24 Glassman, E.L. (2005). A wavelet‐like filter based on neuron action potentials for analysis of human scalp electroencephalographs. IEEE Transactions on Biomedical Engineering 52 (11): 1851–1862.

25 25 Chen, Y. and Ma, J. (2014). Random noise attenuation by f‐x empirical‐mode decomposition predictive filtering. Geophysics 79 (3): V81–V91.

26 26 Chen, Y., Zhou, C., Yuan, J., and Jin, Z. (2014). Application of empirical mode decomposition in random noise attenuation of seismic data. Journal of Seismic Exploration 23: 481–495.

27 27 Huang, Y.X., Schmitt, F.G., Lu, Z.M., and Liu, Y.L. (2008). An amplitude‐frequency study of turbulent scaling intermittency using Hilbert spectral analysis. Europhysics Letters 84: 40010.

28 28 Gerloff, G., Richard, J., Hadley, J. et al. (1998). Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain 121 (8): 1513–1531.

29 29 Sharott, A., Magill, P.J., Bolam, J.P., and Brown, P. (2005). Directional analysis of coherent oscillatory field potentials in cerebral cortex and basal ganglia of the rat. Journal of Physiology 562 (3): 951–963.

30 30 Granger, C.W.J. (1969). Investigating causal relations in econometric models and cross‐spectral methods. Econometrica 37: 424–438.

31 31 Bernosconi, C. and König, P. (1999). On the directionality of cortical interactions studied by spectral analysis of electrophysiological recordings. Biological Cybernetics 81 (3): 199–210.

32 32 Kaminski, M., Ding, M., Truccolo, W., and Bressler, S. (2001). Evaluating causal relations in neural systems: Granger causality, directed transfer function, and statistical assessment of significance. Biological Cybernetics 85: 145–157.

33 33 Kaminski, M. and Blinowska, K. (1991). A new method of the description of information flow in the brain structures. Biological Cybernetics 65: 203–210.

34 34 Jing, H. and Takigawa, M. (2000). Observation of EEG coherence after repetitive transcranial magnetic stimulation. Clinical Neurophysiology 111: 1620–1631.

35 35 Kuś, R., Kaminski, M., and Blinowska, K. (2004). Determination of EEG activity propagation: pair‐wise versus multichannel estimate. IEEE Transactions on Biomedical Engineering 51 (9): 1501–1510.

36 36 Ginter, J. Jr., Kaminski, M.J., Blinowska, K.J., and Durka, P. (2001). Phase and amplitude analysis in time–frequency–space; application to voluntary finger movement. Journal of Neuroscience Methods 110: 113–124.

37 37 Akaike, H. (1974). A new look at statistical model order identification. IEEE Transactions on Automatic Control 19: 716–723.

38 38 Ding, M., Bressler, S.L., Yang, W., and Liang, H. (2000). Short‐window spectral analysis of cortical event‐related potentials by adaptive multivariate autoregressive modelling: data preprocessing, model validation, and variability assessment. Biological Cybernetics 83: 35–45.

39 39 Widrow, B., Glover, J.R., McCool, J. Jr. et al. (1975). Adaptive noise cancelling principles and applications. Proceedings of the IEEE 63 (12): 1692–1716.

40 40 Satorius, E.H. and Shensa, M.J. (1980). Recursive lattice filters: a brief overview. Proceedings of the 19th IEEE Conference on Decision Control, 955–959.

41 41 Lee, D., Morf, M., and Friedlander, B. (1981). Recursive square‐root ladder estimation algorithms. IEEE Transactions on Accoustic, Speech, Signal Processing 29: 627–641.

42 42 Lawsen, C.L. and Hansen, R.J. (1974). Solving Least‐Squares Problem. Prentice Hall.

43 43 Proakis, J.G., Rader, C.M., Ling, F. et al. (2001). Algorithms for Statistical Signal Processing. Prentice Hall.

EEG Signal Processing and Machine Learning

Подняться наверх