Читать книгу Enfermedades transmitidas por los alimentos - Santiago Pablo Baggini - Страница 8

Оглавление

1. GENERALIDADES

1.1 Consideraciones previas y objetivos del Libro

En este caso en particular, se abordará el tratamiento de un tema sensible y de notable actualidad como es el de las Enfermedades transmidas por los alimentos o ETA. Todos los alimentos son susceptibles de contaminación. La ingesta de un producto contaminado podrá ser causa de una enfermedad.

Las enfermedades de transmisión alimentaria no solo afectan la salud del consumidor, sino que producen un impacto socio - económico sobre la población de pertenencia; por lo que el control implica identificar y reducir los peligros para mitigar los riesgos de ocurrencia de las mismas.

Se analizará la historia de estas enfermedades, identificando a los microorganismos responsables de la alteración y a los parásitos responsables de las enfermedades trasmitidas por alimentos, pero además estudiaremos otras ETA no vectorizadas por entes biológicos.

Se revisarán las principales enfermedades transmitidas por alimentos contaminados en función de su importancia como problema de salud pública a nivel mundial y además se entregarán herramientas para que el lector aprenda cómo contribuir a disminuir o eliminar los riesgos microbiológicos de dichos alimentos.

Se enfatizará por último, el rol que les cabe a los Organismos Internacionales (FAO y OMS) y a los Nacionales (Código Alimentario Argentino, Mercosur, UE, etc) en el control de las enfermedades asociadas al consumo de alimentos contaminados, conociendo las etapas en las que se pueden prevenir y reducir los riesgos de contaminación a lo largo de toda la cadena agroalimentaria, relacionando la higiene personal con la transmisión de enfermedades en el proceso tecnológico de obtención higiénica de alimentos e interpretando la legislación alimentaria vigente para aplicarla en el desempeño profesional.

1.2 Un poco de historia

Las Enfermedades Trasmitidas por Alimentos se conocen desde épocas muy remotas. En el 2000 A.C, Moisés había dictado leyes sobre los alimentos que se podían comer y los que se debían rechazar, así como también estaban legislados los métodos de preparación y la importancia de la limpieza de las manos antes de ingerir los alimentos. Generalmente los relatos de intoxicaciones alimentarias que registra la historia antigua se atribuían a productos químicos venenosos, a veces incorporados deliberadamente. Recién en el siglo XIX se tuvo conocimiento de las enfermedades alimentarias producidas por gérmenes. Antiguamente se relacionaban los alimentos contaminados con el estado de putrefacción de los mismos. Hoy se sabe que los alimentos contaminados con microorganismos pueden tener aspecto, olor y sabor normales.

Las bacterias fueron vistas por primera vez gracias a Antony Van Leeuwenhoek, un científico holandés que en 1674 observó, en una gota de agua de un lago, a través de varias lentes que formaban un primitivo microscopio, la presencia de pequeños organismos en forma de bastones. En una carta del 7 de septiembre de ese año, describió lo que había visto a través de su novedoso artefacto:

“Extraje agua de un lago y, examinándola detenidamente, encontré flotando ahí dentro unas partículas terrosas y algunas rayas verdosas enrolladas en forma de espiral y ordenadamente acomodadas. La circunferencia entera de cada una de estas rayas estaba sobre el grueso de un pelo de una de sus cabezas, todas consistentes de glóbulos verdes muy pequeños que permanecían juntos”.

Sus dibujos reflejaron que se trataba de las primeras bacterias descriptas; sin embargo, sus descubrimientos no fueron tomados en cuenta en aquella época. Sólo doscientos años después, cuando el químico francés Luis Pasteur demostró el papel que jugaban las bacterias en las fermentaciones de vinos y de cervezas, se apreciaron estos hallazgos.

Pasteur investigó enfermedades en animales y hombres demostrando que las mismas eran causadas por bacterias. También observó que, si los alimentos eran esterilizados a través de una rigurosa cocción, se producía la muerte de la bacteria y el alimento sólo podía recontaminarse por razones externas (utensilios, manipulaciones, etc.) Al descubrirse el modo de difusión de estas enfermedades se empezaron a aplicar métodos de prevención y tratamiento. En el año 1854, el médico inglés John Snow descubrió que el agua contaminada podía favorecer la difusión del cólera. Años más tarde se descubrió en Suiza que la fiebre tifoidea también era vehiculizada por el agua.

A fines del siglo XIX se vio que la leche participaba en la difusión de importantes enfermedades, introduciéndose la Pasteurización (tratamiento que destruye a las bacterias nocivas). En el año 1888 fue aislada por primera vez una bacteria causante de un brote de intoxicación alimentaria por consumo de carne cocida. A principios del siglo XX fueron descubiertas otras bacterias (Salmonellas, Staphylococcus, etc.). Lo demás, ya es historia vigente.


Louis Pasteur

(Getty Images)

1.3 Introducción a las ETA

Las ETA se producen por consumo de alimentos que contienen organismos patógenos o substancias nocivas en cantidades suficientes que afecten la salud del consumidor. La OMS afirma que es uno de los problemas de salud más extendidos en el mundo contemporáneo y una causa importante en la reducción de la productividad económica. Cada año la OMS recibe informes sobre la ocurrencia de brotes en el mundo y concluye que las ETA más frecuentes y numerosas son aquellas ocasionadas por alimentos que han sufrido una contaminación BIOLÓGICA. Pocas personas saben que los alimentos que consumimos todos los días pueden causarles enfermedades conocidas como ETA. Llamadas así porque el alimento actúa como vínculo en la transmisión de organismos patógenos y sustancias tóxicas.

Mientras que las ETA están causadas por la ingestión de alimentos y/o aguas contaminados con agentes patógenos, están también las alergias por hipersensibilidad individual a ciertos alimentos, por ejemplo, la alergia al maní o a los frutos de mar que sufren algunas personas. Las ETA pueden manifestarse a través de:

√ Infecciones: Resultan de la ingestión de alimentos que contienen microorganismos vivos perjudiciales: Salmonelosis, Hepatitis viral A, Toxoplasmosis.

√ Intoxicaciones: Dadas por la ingesta de alimentos con toxinas formadas en tejidos de plantas o animales, o de productos metabólicos de microorganismos en los alimentos, o de sustancias químicas incorporadas a aquellos de modo accidental, incidental o intencional desde su producción hasta su consumo: Botulismo, Estafilococcia, Toxinas por hongos.

√ Toxi-Infecciones: Producidas por la ingestión de alimentos con una cantidad de microorganismos causantes de enfermedades, los cuales son capaces de producir o liberar toxinas una vez que son ingeridos: Cólera.

Un brote de ETA se produce cuando dos o más personas sufren una misma enfermedad después de consumir el mismo alimento, incluida el agua, del mismo origen y donde la evidencia epidemiológica o el análisis de laboratorio implican a los alimentos y/o agua como vehículos de la misma.


ETA

(Getty Images)

Los síntomas pueden durar varios días, incluyendo: vómitos, diarreas, dolores abdominales y fiebre. También pueden presentarse síntomas neurológicos como: ojos hinchados, dificultades renales y visión doble. La duración e intensidad de los mismos pueden variar de acuerdo al alimento, la cantidad consumidos y a la salud de las personas. Se han registrado alrededor de 250 enfermedades transmitidas por alimentos. Todos los humanos, pero los niños, ancianos, inmunodeprimidos y embarazadas, son especialmente vulnerables y deben extremar los cuidados.

Para las personas sanas, la mayoría de las ETA son enfermedades pasajeras, que sólo duran un par de días y sin ningún tipo de complicación, pero para las personas más susceptibles pueden ser más severas, dejar secuelas o incluso hasta provocar la muerte.

Se estima que cada año mueren por diarreas 1 millón de niños menores de 5 años en países en vías de desarrollo, lo que implica 2.700 decesos por día. La OMS ha determinado que todos somos susceptibles a las enfermedades causadas por alimentos contaminados, cualquier persona de cualquier estrato puede estar en condición de contraer una ETA.

El Comité de Expertos de la OMS analizó que la mayoría de las enfermedades por alimentos son de origen microbiano, que tal vez sea el problema más extendido en el mundo contemporáneo y una causa importante de la reducida productividad económica.

Según los investigadores de la OMS, las ETA constituyen una patología con una proporción de personas en condiciones de contraer la enfermedad que alcanza a todos los estratos poblacionales, es decir que todos somos susceptibles a las enfermedades causadas por alimentos contaminados.

Las bacterias son organismos microscópicos que circulan por el ambiente, incluido en los alimentos, el agua, las personas y los animales. Sorprende saber que muchas de esas bacterias son inofensivas, y que incluso, algunas de ellas son útiles para el desarrollo humano, por ejemplo, son necesarias para la elaboración del yogurt y también para algunos tipos de quesos.

Sin embargo, un pequeño número de bacterias provocan el deterioro en los alimentos, y algunas, más conocidas como las patógenas, son las responsables de provocar enfermedades.

Es prácticamente imposible llevar adelante un negocio de los alimentos sin estar exento de que las bacterias causantes de enfermedades se hagan presentes. Por lo tanto, realmente es importante que no le demos la posibilidad de que se reproduzcan, ya que su multiplicación en cierto nivel puede ocasionar un brote de enfermedad. Los microorganismos peligrosos pueden llegar a los alimentos en cualquier momento, desde que son producidos en el campo hasta que son servidos. Cuando aquéllos sobreviven y se multiplican pueden causar enfermedades en los consumidores.

La contaminación es difícil de detectar, ya que generalmente no se altera el sabor, el color o el aspecto de la comida. Una defectuosa preparación, cocción o almacenamiento, también, son las principales causas para la aparición de las bacterias, que comienzan a multiplicarse y hacen el consumo peligroso para la salud. Una defectuosa preparación, cocción o almacenamiento de un alimento, son las principales causas para la aparición de las bacterias en cualquier plato de comida, que comienzan a multiplicarse y hacen que el consumo del alimento sea peligroso para la salud.

La presencia de bacterias no siempre se hace visible en los alimentos, no siempre presentan cambios de sabor, olor o, incluso, alteraciones en su aspecto. El objetivo de la higiene en este sentido es garantizar la producción y elaboración de alimentos que sean inocuos y limpios. Si se revisan las causas de cómo se produjo una ETA, pueden encontrarse los siguientes factores:

√ Enfriamiento inadecuado

√ Preparación con demasiada anticipación al consumo

√ Almacenamiento inadecuado

√ Conservación a temperatura ambiente

√ Cocción insuficiente. (temperaturas inadecuadas de cocción)

√ Conservación caliente a temperatura inadecuada

√ Higiene personal insuficiente

√ Contaminación cruzada

√ Ingredientes de origen dudoso

√ Contacto de alimentos con animales y/o sus excrementos

1.4 Deterioro de los alimentos

El deterioro o alteración de los alimentos comprende todo cambio que los convierte en inadecuados para el consumo y ello se debe a múltiples causas. A menudo es difícil señalar si un alimento está realmente alterado ya que varían las opiniones acerca de si un alimento es apto para el consumo o no. Tales diferencias de opinión son especialmente evidentes cuando se contemplan bajo un punto de vista mundial, como se deduce del bien conocido ejemplo siguiente. Los británicos prefieren la carne de caza que se deja «colgada» varios días para que sufra una serie de cambios organolépticos que favorecen la aparición de un «fuerte» aroma. Mientras los británicos consideran que esta carne es una delicia los ciudadanos de otros países, incluidos los estadounidenses, la consideran alterada e inaceptable. La alteración de los alimentos puede deberse a:

√ Ataque de insectos.

√ Lesiones físicas por golpes, presiones, heladas, deshidratación y radiación.

√ Actividad de enzimas tisulares autóctonas, tanto vegetales como animales. Si tales enzimas no se destruyen, continúan actuando durante el procesado y almacenamiento. Así las peroxidasas, que se encuentran naturalmente en las hortalizas verdes, pueden originar olores y sabores extraños durante el almacenamiento.

√ Cambios químicos no producidos por los microorganismos ni por las enzimas autóctonas. En estos cambios generalmente está implicado el oxígeno y prescindiendo del deterioro por microorganismos, son la causa de alteración más frecuente. Como ejemplos de deterioro químico citaremos la rancidez oxidativa de las grasas y aceites y los colores extraños de las carnes curadas.

√ Actividad de los microorganismos, sobre todo bacterias, levaduras y mohos.

La alteración originada por los microorganismos es, sin ninguna duda, la más importante de las citadas y en este módulo le prestaremos especial atención. Basándose en la sensibilidad de los alimentos a la alteración, pueden clasificarse como estables o no alterables (por ej., la harina), semialterables (por ej., las manzanas) y alterables (por ej., carnes curadas). La inclusión de un alimento dado en uno de estos grupos depende de muchos factores interrelacionados.

Así la harina de trigo o de maíz, es intrínsecamente un alimento estable debido a su baja Aw (actividad de agua), pero un almacenamiento deficiente que facilite la absorción de humedad, la convierte en un producto alterable.


Harina de trigo (Getty Images)

Al estudiar la alteración de los alimentos crudos, debe asumirse que en el alimento hay inicialmente una gran variedad de microorganismos y que, cuando se inicia el crecimiento microbiano, algunas especies se encuentran con unas condiciones más favorables que otras y, en consecuencia, aquéllas sobrepasarán en desarrollo a las últimas.

De hecho, el crecimiento competitivo de las estirpes favorecidas, generalmente se traduce en el predominio de una o dos cepas, que se convierten en la flora más abundante y en la responsable de la alteración observada.

De aquí que, aunque en un tipo dado de alimento, los microorganismos deteriorantes representen sólo una parte muy pequeña de la flora inicial, se convierten en los predominantes bajo una serie de condiciones de almacenamiento especificas; como resultado en un alimento concreto y bajo unas condiciones de almacenamiento determinadas puede predecirse, el tipo específico de alteración microbiana que aparecerá.

En este momento debe señalarse, sin embargo, que la especie microbiana predominante en el momento de la alteración no siempre es la responsable de la última; por ejemplo, en el pescado se ha observado que las especies auténticamente «alterantes» sólo suponen el 30 % de la flora total en el momento del deterioro.

RECUERDE: El adecuado almacenamiento del alimento, impedirá su deterioro

Aunque los tipos predominantes y los «alterantes» pueden estar muy próximos taxonómicamente (esto es, pertenecer al mismo género e incluso a la misma especie), sólo los últimos inducen los cambios químicos asociados a la alteración.

La extensión del cambio químico producido por una sola célula microbiana es muy pequeña, de forma que las alteraciones detectabIes por medios químicos ortodoxos sólo pueden producirlos las poblaciones microbianas que alcancen la máxima densidad posible.

Para inducir una alteración, detectable varios días en los alimentos, se necesitan unas 108 bacterias por gramo y el deterioro producido, cuando el número de bacterias es bastante menor que el citado, no tiene un origen bacteriano.

Las poblaciones microbianas de los alimentos y en particular las bacterianas, rara vez superan unas 1010 células por gramo, por lo que puede inferirse que los microorganismos responsables de la alteración, aunque no siempre predominen, es muy fácil que representen una parte importante de la flora cuando esté avanzado el deterioro.

Lo antedicho se refiere fundamentalmente a la alteración de los alimentos crudos. Los procesados por calentamiento sufren unos tipos de deterioro especiales debidos a la acción selectiva del calor en los microorganismos del alimento.

Ni que decir tiene que la intensidad de la selección microbiana dependerá del tiempo y de la temperatura a que se calentaron los alimentos; cuanto más drástico haya sido el tratamiento, tanto menores serán el número y la variedad de microorganismos sobrevivientes. Por lo tanto, la alteración de los alimentos enlatados puede deberse a un solo microorganismo resistente a las condiciones de procesado; se trata corrientemente de una bacteria productora de esporas muy termorresistente.


Conserva vegetal (Fotografía del autor, 2008)

1.4.1 Alteraciones en carnes frescas y curadas

En la superficie externa y en el tracto intestinal de los ganados vacuno, lanar y porcino hay ya, antes del sacrificio, un gran número y una gran variedad de microorganismos. En la piel de los bóvidos son corrientes los recuentos que superan los 105 microorganismos por cm2 y en los cerdos sin lavar y en la lana de las ovejas se han alcanzado recuentos sustancialmente mayores (unos 108 por cm2). Sin embargo, se admite que el tejido muscular subyacente es normalmente estéril, salvo en los animales infectados.

El sacrificio de los animales con pistola de bala cautiva y las operaciones subsiguientes, como degollación, desollado, evisceración y despiece, comunes a todos los animales, originan la contaminación de los tejidos subyacentes que antes eran estériles (las ovejas y los cerdos ordinariamente sufren el aturdimiento eléctrico, que no implica contaminación microbiana). Obviamente será la superficie de corte del músculo recién hecha, la que albergará la mayoría de los microorganismos contaminantes, pero el tejido profundo con el tiempo se contamina a partir del aporte de la sangre de las vísceras.

Los recuentos bacterianos totales de las superficies de corte de los músculos corrientemente varían entre 103 y 105 microorganismos por cm2, que proceden principalmente del exterior y del intestino del animal y también de los cuchillos, otros utensilios, mesas de carnización, etc., por lo que a menudo las variaciones de los recuentos reflejan las condiciones higiénicas del frigorífico faenador. La carne constituye un medio ideal para el crecimiento de microorganismos, especialmente bacterias, por lo que, salvo un control eficaz, debe esperarse un rápido desarrollo. El número de microorganismos de la carne puede controlarse con una serie de medidas que se estudian brevemente a continuación.

Debe hacerse constar que la mayoría de los estudios sobre alteración de la carne se han realizado con la de vacuno, pero las características de la alteración son esencialmente iguales en lanares, cerdos y otras especies de abasto. Como se verá más adelante, la aparición de olores anormales y otras características de la alteración de las carnes, se asocian con un nivel particular de bacterias.

Puesto que la velocidad de crecimiento bacteriano en las carnes, a una temperatura dada, sigue un curso conocido, cuanto menor sea la contaminación inicial de la carne más tiempo se requerirá para que la flora bacteriana alcance los niveles alterativos.

Así, en la carne de vacuno almacenada a 5 ºC, si el recuento inicial supera los 105 microorganismos por cm2, la alteración se detecta dentro de los 6 días, mientras que si es de 103 por cm2 no tendrá lugar hasta el 10º u 11º día.

La mayoría de los microorganismos de las canales proceden probablemente de la piel, los animales que lleguen al matadero, antes de su sacrificio deberían liberarse de la suciedad que lleven adherida.

Aún puede reducirse más la carga microbiana de los animales recién sacrificados, rociando las canales con agua caliente y ejerciendo en el matadero un riguroso programa sanitario que incluya una limpieza completa de paredes, suelos, mesas de carnización, cuchillos y otros utensilios, ropas de los operarios, etc.


Ganado vacuno en feria

(Clarín.com)

Cuando se sacrifican los animales, el glucógeno almacenado en sus músculos se convierte en ácido láctico.

En condiciones normales ello determina una caída del pH muscular de aproximadamente 7 a 5,6, lo que tiene una gran importancia ya que determina una disminución de la velocidad de crecimiento de las bacterias contaminantes. Sin embargo, si el animal padeció estrés antes del sacrificio (por ej., debido a excitación, fatiga o hambre) las reservas de glucógeno se agotan, con lo que se produce una cantidad escasa de ácido láctico y el pH final o último de la carne se aproxima a la neutralidad; en estas condiciones la carne se altera más rápidamente, por lo que, inmediatamente antes del sacrificio, los animales deben estar en buenas condiciones fisiológicas.

Después del sacrificio el oxígeno almacenado en los músculos se agota, con lo que el potencial redox (POR) cae hasta niveles muy bajos. La gran capacidad reductora del medio junto con una temperatura inicial alta (38º C) crean un ambiente ideal para el crecimiento de las bacterias anaerobias.

Las bacterias alterantes que predominan son los Clostridium sp., que crecen en la profundidad y no en la superficie de las carnes, degradando los tejidos y originando sustancias malolientes como ácido sulfhídrico y amoníaco. Este proceso, conocido como putrefacción, debe evitarse enfriando rápidamente la carne antes de que el POR baje lo suficiente para permitir el crecimiento de tales microorganismos. Por otra parte, se admite actualmente, que la presencia en gran número de ciertos anaerobios de la putrefacción, puede ser causa de toxiinfección alimentaria. Uno de los microorganismos predominantes en las fases iniciales de la putrefacción es C. perfringens, habiéndose aislado en ocasiones C. botulinum a partir de carnes en putrefacción.

El rápido enfriamiento de la carne, inmediatamente después del faenado, también es conveniente para disminuir el crecimiento de otras bacterias productoras de toxiinfecciones alimentarias, como Salmonella sp, que también son contaminantes frecuentes. De lo expuesto se deduce que el rápido enfriamiento de las canales es imprescindible para disminuir el crecimiento bacteriano inicial y para aumentar el período de almacenamiento potencial.

RECUERDE: Una baja temperatura de almacenamiento reducirá la carga bacteriana a futuro

Las temperaturas de almacenamiento ejercen un efecto manifiesto en el tipo de alteración microbiana, aspecto que estudiamos ahora con cierto detalle. Como ya se ha indicado, las canales y piezas cárnicas mantenidas a temperaturas de 20 ºC o mayores sufren inevitablemente putrefacción. Sin embargo, si por el picado o fileteado aumenta la relación área superficial/volumen, el POR de la carne cruda también aumenta, creándose así condiciones menos favorables para el desarrollo de los anaerobios de la putrefacción.

En estas condiciones el crecimiento en la superficie de la carne es muy rápido, y el POR aumentado permite que se desarrolle una flora microbiana miscelánea. La carga microbiana en el momento de la alteración todavía contiene Clostridios, pero los que ahora predominan son los bacilos mesófilos, anaerobios facultativos y Gram negativos.

La mayoría de ellos son de origen entérico y comprenden los géneros: Escherichia, Aeromonas, Proteus y Enterobacter. Otros géneros que también están representados son: Staphylococcus y Micrococcus (cocos Gram positivos) y Bacillus (bacterias esporuladas aerobias y anaerobias facultativas). A 20ºC la carne fresca en filetes o picada se altera pronto y alcanza su recuento máximo en 3 – 4 días. Los primeros síntomas de alteración (olores anormales) se detectan en los dos primeros días y la presencia de limo o viscosidad se observa a los 3 días.

Debe hacerse notar que, cualquiera que sea la temperatura de almacenamiento, la producción de olores extraños y de viscosidad acaecen cuando los recuentos totales alcanzan los 107 y los 108 microorganismos cm2 y g respectivamente; de hecho, esta relación sirve para las carnes en general. Los potenciales OR altos de las carnes picadas y fileteadas favorecen más a los microorganismos proteolíticos que a los putridógenos.

Los olores anormales originados se designan corrientemente como «agrios» y se deben a la formación de ácidos volátiles, como el fórmico y el acético; el limo superficial es consecuencia del gran desarrollo bacteriano y del ablandarniento de las proteínas estructurales de la carne. La naturaleza de los cambios bioquímicos que acaecen a estas altas temperaturas ha sido poco estudiada, habiéndose trabajado mucho más en los cambios que tienen lugar a las temperaturas de refrigeración utilizadas comercialmente.

Al descender las temperaturas de almacenamiento por debajo de los 20 ºC, las bacterias mesófilas son sobrepasadas en crecimiento por las psicrótrofas, si bien hay una pequeña proporción de las primeras que todavía crecen a 5 ºC. las carnes fileteadas y picadas mantenidas a 15 – 10 ºC desarrollan olores extraños después de 4 – 5 días de almacenamiento y la formación de limo es evidente a los 7 días aproximadamente; la flora microbiana va siendo progresivamente dominada por Pseudomonas sp. que representa sobre el 95 % de la flora total en el momento de la alteración. A temperaturas de 5 ºC y menores se observa una fase de latencia manifiesta. Su duración depende de la temperatura de almacenamiento y viene a ser de unas 24 h a 5 ºC y de 2 – 3 días a 0 ºC.

Además, a temperaturas próximas a 0 ºC se aprecia una caída inicial del número de bacterias viables que se debe, probablemente, a la muerte o lesión de muchos tipos de bacterias a estas bajas temperaturas. A medida que la temperatura se aproxima a los 0 ºC, el crecimiento bacteriano, una vez iniciado, es mucho más lento y cada vez son menos los tipos que pueden crecer.

Por lo tanto, el período, previo a la aparición de los primeros signos de alteración, se alarga y la producción de olores anormales y de limo ocurren a 5 ºC aproximadamente a los 8 y 12 días respectivamente y a 0 ºC a los 16 y 22 días.

Cualitativamente la flora alterativa está dominada también por Pseudomonas sp., en los últimos estadios, debido a que crecen a estas temperaturas más rápidamente que todas las demás especies competidoras.


Carga bacteriana de la carne fresca picada de vacuno almacenada a distintas temperaturas (Shaw y Latty, 1982)

Por otra parte los verdaderos mesófilos sólo representan en este momento una fracción pequeña de la flora total, pero dado que durante el almacenamiento aumenta el número de bacterias que se observan en los medios incubados a 37 ºC, ello indica que algunos tipos mesofilicos deben desarrollarse en las carnes mantenidas a 5 ºC.

Debido al carácter netamente aerobio de Pseudomonas spp, el crecimiento se limita a la superficie y a unos 3 – 4 mm de profundidad en los tejidos subyacentes. Por lo tanto, el tipo de alteración es en gran parte independiente del tamaño del corte o pieza de carne y la alteración de las canales es lógico que se limite a las porciones superficiales; el crecimiento de los clostridios se inhibe a estas bajas temperaturas y por lo tanto no tiene lugar la putrefacción.

Bajo condiciones de almacenarniento normales la humedad de las canales es alta y sus superficies permanecen húmedas. Cuando el almacenamiento se prolonga, o cuando bajan los niveles de humedad, se intensifica la desecación de las capas superficiales y consecuentemente baja la Aw que favorece el crecimiento fúngico.

Cuando se favorece de esta manera el crecimiento de los hongos, se localiza principalmente y sólo afecta a las porciones más superficiales, por lo que puede expurgarse sin ningún peligro para el resto de la carne. La alteración debida al crecimiento de mohos presenta varias formas:

√ «Florecido» o «barbillas»: miembros de los géneros Mucor; Rhizopus y Thamnidium producen micelios de aspecto algodonoso, de color blanco a gris, en la superficie de las canales.

√ «Manchas negras»: por Cladosporium herbarum y C. cladosporoides que crecen en una gran variedad de carnes incluso a temperaturas tan bajas como los -5 ºC. Originan manchas negras debido al desarrollo de micelio muy obscuro.

√ Penicillium sp. y Cladosporium sp. cuando crecen en la carne producen gran número de esporas de color amarillo a verde: en la carne originan manchas del mismo color.

√ «Manchas blancas»: generalmente se deben al crecimiento de Sporotrichum carnis.


Carne vacuna fresca, contaminada por hongos (Fotografía del autor, 2008)

Al estudiar los cambios químicos que ocurren durante la alteración a bajas temperaturas deben diferenciarse entre los cambios inducidos por las enzimas naturales presentes en los tejidos animales y los debidos a las enzimas bacterianas. De hecho, esta diferenciación es difícil, por ello hasta los años ‘70 no se comprendieron bien los originados por las bacterias como tales.

En los aminoácidos de las carnes almacenadas acaecen cambios que se deben a cualquiera de estas series de enzimas. Inicialmente las bacterias atacan a la glucosa, a los aminoácidos y a otros compuestos de bajo peso molecular, como los nucleótidos, más que a las proteínas de la carne.

Estos cambios se acompañan de un marcado aumento del pH, desde aproximadamente 5,6 hasta incluso 8,5, debido fundamentalmente a la formación de amoniaco por degradación bacteriana de los aminoácidos; en consecuancia los valores del pH se han utilizado para establecer la capacidad de conservación de la carne.

La proteólisis, es decir, la escisión de las proteínas de la carne, sólo tiene lugar en los últimos estadios de almacenamiento y únicamente se observa cuando aparecen otros signos alterativos. La degradación de las proteínas se debe a la actividad de las proteasas bacterianas y se nota primero cerca de la superficie de la carne; sin embargo, con el tiempo estos enzimas penetran más profundamente en los tejidos (Tarrant et al., 1971).


Carne vacuna fresca, contaminada por Pseudomona aeruginosa (Fotografía del autor, 2008)

Las pseudomonas son las principales responsables de la proteólisis que acaece cuando su número supera las 109 por cm2. Como resultado del desarrollo microbiano se producen grandes cantidades de compuestos volátiles; de ellos, acetona, metil-etil-cetona, dimetil-sulfuro y dimetil-disulfuro, son probablemente los que mejor se relacionan con la intensidad de la alteración.

Muchas pseudomonas son también productoras activas de lipasa a bajas temperaturas y por lo tanto están con frecuencia implicadas en la hidrólisis de las grasas, proceso que da lugar a la producción de aromas repugnantes como consecuencia de la formación de ácidos grasos.

Las bacterias alterantes también producen lipoxidasas que aceleran la oxidación de los ácidos insaturados a aldehídos y de esta forma contribuyen al problema conocido como «rancidez oxidativa». La rancidez oxidativa se produce normalmente por una incorporación lenta de oxígeno y no es de origen microbiano.

Se sabe, sin embargo, que la alteración bacteriana de la superficie de los tejidos grasos de la carne fresca sigue un curso similar al de la degradación proteica y de nuevo el ataque de las bacterias a los lípidos tiene lugar cuando la alteración está muy avanzada.

Con respecto a las carnes curadas, los ingredientes principales de las sales del proceso de curado son sal y nitrato y/o nitrito sódico. La sal se incorpora como agente conservador que actúa disminuyendo la aw de la carne. Pseudomonas sp., de importancia en la alteración de las carnes refrigeradas, es muy sensible a la disminución de la aw y a ella se debe, en parte, la relativa estabilidad de las carnes curadas.

El papel del nitrato en el control de la alteración no está claro, si bien es muy útil para el desarrollo del color rojo de estas carnes, siendo reducido a nitrito por las bacterias.


Jamón crudo curado (Fotografía del autor, 2008)

El nitrito, además de colaborar al color de la carne, ejerce un papel principal al prevenir la germinación y el crecimiento de las esporas. El nitrito per se no es muy activo, pero su eficacia la refuerzan ciertos factores como concentración de sal, pH y temperatura de almacenamiento, todos los cuales son importantes en la estabilidad de las carnes curadas.

El curado puede llevarse a cabo por uno de los tres procedimientos siguientes: en el primero, curado en seco, los agentes del curado se aplican por frotación a la superficie de la carne, mientras que en el segundo, salmuerado, las carnes se sumergen en una salmuera de los agentes del curado. En ambos métodos las carnes se mantienen a 3 – 4 ºC hasta que los agentes penetran en el centro de las piezas.

Estas bajas temperaturas disminuyen las posibilidades de crecimiento de los anaerobios de la putrefacción, pero pueden surgir problemas de alteración debido a una lenta penetración de la salmuera.

Estos problemas se superan en gran parte en el tercer procedimiento, salmuerado por inyección, introducido en los últimos años. En este procedimiento la salmuera se inyecta en los tejidos más profundos mediante agujas largas, dotadas de varios orificios en toda su longitud, que se disponen en filas, de forma que tienen lugar a la vez varios cientos de inyecciones separadas. Una variedad de esta técnica consiste en bombear la salmuera por el sistema vascular que la canaliza a las distintas regiones orgánicas. En ambos procedimientos, las carnes se someten posteriormente a inmersión en salmuera. En 1983 y para aumentar la vida útil del bacon, se desarró una técnica de salado en seco en la que las semicanales para bacon se hacían pasar por una nuebe de sal en polvo después de sacarlas de la salmuera de curado.

Las salmueras empleadas en el curado del bacon contienen corrientemente 20 – 27 % de sal que ejerce un profundo efecto en los tipos de microorganismos existentes. La flora predominante de una salmuera típica de curado, está dominada por los micrococos que toleran la baja aw del entorno. Durante el curado estos microorganismos se convierten también en los predominantes en las semicanales, por lo que la flora normal heterogénea de las carnes frescas es en gran parte sustituida por este grupo. Los Micrococcus sp., además de crecer en medios de cultivo con 20 % de NaCl, son psicrótrofos y se desarrollan a 4 ºC. Otra de sus importantes características es su capacidad de reducir los nitratos a nitritos y por lo tanto juegan un papel importante en parte del proceso de curado.

Terminada la curación, que dura de 4 a 14 días, las semicanales de bacon se escurren y se dejan madurar otros 5 – 10 días a 4 ºC; durante estos procesos tiene lugar una disminución gradual de la concentración de sal del bacon hasta niveles bien por debajo del 10 %. De hecho el bacon con mayores concentraciones salinas es el que tiene una concentración final de sal >5 %; al final de la maduración los recuentos bacterianos varían entre 104 y 106 por cm2, y aunque se mantiene el predominio de los micrococos (>60 %), aumenta la proporción de bacterias Gram negativas, en especial Acinetobacter y Vibrio sp. Durante el almacenamiento subsiguiente del bacon aumenta gradualmente el número de bacterias hasta un máximo de aproximadamente 108 microorganismos por cm2, después de 2-3 semanas a 10 ºC.

En este momento la flora se compone de proporciones, aproximadamente iguales, de los géneros Micrococcus, Vibrio y Acinetobacter, aunque si el bacon se mantiene en condiciones de frío los vibrios predominan, sobre todo en la superficie.

El gran recuento de la superficie de una semicanal de bacon se asocia a la formación de limo y generalmente se debe a vibrios halófilos, pero no habrá deterioro manifiesto alguno de la calidad del bacon dado que los cambios en el interior de la carne son normalmente mínimos. Uno de tales cambios es el llamado “hueso hediondo” que se debe principalmente a vibrios y micrococos. Se caracteriza por un olor desagradable que se aprecia al deshuesar el bacon; se debe a un mal curado o al empleo de carnes con un pH demasiado alto.

Cuando eventualmente tiene lugar el deterioro, generalmente se debe a micrococos y vibrios, junto con diversas levaduras y mohos, incluidos respectivamente Torulopsis sp. y Aspergillus sp. Los olores y sabores repugnantes generalmente se asocian más a la grasa que a la carne magra, si bien en la última los micrococos pueden producir cambios proteoliticos. La hidrólisis de las grasas se debe a las lipasas bacterianas y tisulares, mientras que la rancidez oxidativa origina el amarilleamiento de la grasa.


Productos de charcuteria (Fotografía del autor, 2008)

El ahumado, por su parte, además de proporcionar un aroma y color apetecibles, también contribuye a la conservación del producto. Su efecto es a la vez bacteriostático (es decir, frena el crecimiento bacteriano) y bactericida (destruye las bacterias) si bien los mohos también se afectan en cierto grado. El humo actúa de dos formas: primero, al desecar la superficie disminuye más la aw y acentúa los efectos de la sal; segundo, impregna los tejidos de conservantes químicos como el formaldehido y los fenoles que inhiben el desarrollo microbiano.

Además, durante el proceso de ahumado se destruye un gran número de bacterias del bacon, dependiendo del tiempo y tipo de ahumado. Micrococos, levaduras y mohos son los más frecuentemente alsíados del bacon, si bien cuando se utiliza el humo líquido, las bacterias lácticas serán las que predominarán.

Puesto que estas bacterias originan una alteración agria, menos ofensiva que la producida por los micrococos y en una fase más tardía, se prolonga así la vida útil del producto.

Los procesos de curado de los jamones son iguales a los del bacon, salvo que frecuentemente se adiciona azúcar con las sustancias de curado. Puede ser atacado por bacterias, en especial lactobacilos, y sus fermentaciones dan lugar a diversos tipos de acidez; no obstante, se ha sugerido que los lactobacilos son útiles para mantener la estabilidad de las salmueras al evitar el excesivo aumento del pH.

En general los microorganismos encontrados en los jamones son iguales a los del bacon y su flora se compone principalmente de micrococos, estreptococos y lactobacilos, en proporciones que dependen de la concentración de sal y del tiempo en almacén. Los jamones con mayores concentraciones de sal también soportan el crecimiento de una mayor proporción de levaduras y posiblemente de mohos.

Para envasar productos al vacío, los materiales utilizados por la industria alimentaria varían desde los muy impermeables, necesarios para el envasado a vacío, a los muy permeables y desde los opacos a los transparentes. Sus materiales están consituidos o por componentes simples, como el polietileno (politeno) y el cloruro de polivinilo (PVC), o por componentes múltiples.

En el último caso los materiales están formados por capas de distintos productos para conseguir las características de envasado más convenientes. Películas constituidas por nitrocelulosa y cera se aplican a uno o a los dos lados de una lámina sencilla, como la celulosa; alternativamente pueden fabricarse multicapas utilizando, por ejemplo, etilen- vinil-acetato con dos capas de PVC (esto es, Cryovac).


Carne vacuna fresca para venta (Fotografía del autor, 2009)

Desde el punto de vista microbiológico las propiedades fundamentales de los materiales de envasado son su permeabilidad al vapor de agua y a ciertos gases, incluido el oxígeno. La permeabilidad al vapor de agua varía de acuerdo con el material de envasado. Las carnes frescas generalmente se envasan en películas permeables al oxígeno con el fin de conservar el color rojo brillante de la mioglobina oxigenada. Por el contrario, las carnes curadas se envasan en películas impermeables al oxígeno para prevenir que empalidezca el color como consecuencia de la oxidación. En los últimos años se ha estudiado la posibilidad de distribuir la carne fresca de vacuno en forma de cortes primarios refrigerados y envasados a vacío, en vez de en canales, método que se está popularizando debido a que mejora su vida útil; otra ventaja adicional es que disminuyen las pérdidas de peso debidas a la desecación superficial.

El envasado a vacío también se está popularizando cada vez más en el comercio, a pesar de que se ha criticado, con justicia, por las pérdidas de color; esto se compensa por la mayor vida útil de la carne y por la rápida regeneración del color rojo normal que tiene lugar al abrir el envase o al reempaquetar la carne en una película permeable al oxigeno.

La disponibilidad de oxígeno en el interior del envase ejerce cierta influencia en la flora microbiana: la carne, como muchos microorganismos, tiene una gran demanda de oxígeno, por lo que los niveles del mismo se agotan rápidamente en los envases más impermeables sin necesidad de hacer el vacío.

A la vez aumentan las concentraciones de dióxido de carbono (CO2) de estos envases a una velocidad que depende de la permeabilidad de la película. Sin embargo, los materiales de envasado son más permeables al CO2 que al oxígeno, por lo que una película poco permeable puede impedir la salida del oxígeno, dejando escapar el CO2 y manteniendo el vacío del envase.

Aumentar las concentraciones de CO2 en el envase tiene sus ventajas, ya que es inhibidor frente a muchos microorganismos, incluidos mohos y pseudomonas, grupo el último que constituye la flora dominante de las carnes frescas alteradas. Las bacterias lácticas y las levaduras son mucho más resistentes a niveles altos de CO2 por lo que es de esperar que aparezcan en la alteración característica de las carnes envasadas.

Otro factor que afecta al tipo de alteración microbiana es la aw que, lógicamente, es alta en los envases de película impermeable. Puesto que el envase no pierde agua, el desarrollo microbiano no se ve frenado por la caída de la aw, sin embargo, en el interior del envase sus efectos se subordinan a los del dióxido de carbono y del oxígeno.

Cuando la carne envasada se almacena a temperaturas cálidas experimenta los cambios putrefactivos corrientes. Por ello esta carne se almacena siempre a temperaturas de refrigeración; sólo se estudiará la carne así almacenada. El crecimiento de los microorganismos de las carnes frescas envasadas a vacío, almacenadas a 3-5 ºC, se retrasa observándose corrientemente un período de latencia de 3 a 5 días. El crecimiento subsiguiente es lento y continúa aproximadamente 10 días, transcurridos los cuales el recuento total viene a ser de 107 microorganismos/cm2 (o por gramo en la carne picada); esto supone aproximadamente el 1 % del alcanzado en películas permeables. Cualitativamente la flora microbiana del envase impermeable está dominada por las bacterias lácticas (sobre todo lactobacilos y leuconostoc) que al final del almacenamiento representan el 50-90 % de la flora total.

Esto refleja su característica resistencia al acúmulo de dióxido de carbono y su capacidad de crecer en condiciones anaerobias. Las bacterias lácticas atacan preferentemente a los carbohidratos, pero debido a la escasa concentración de éstos en la carne, es relativamente poco el ácido formado y en consecuencia la caída del pH no es muy marcada. Esto significa que incluso cuando es máxima la densidad de estos microorganismos, la alteración observada es poco manifiesta y se asocia a olores amargos o a queso rancio, debido a la formación de ácidos grasos, entre los que sobresalen el acético y el butírico.

Al aumentar la permeabilidad de la película del envase, la flora alterativa cambia gradualmente a otra formada por una gran proporción de pseudomonas; por lo tanto los cambios alterativos son los típicos de la carne fresca sin envasar. Las proporciones relativas de pseudomonadales, bacterias lácticas y otros grupos, menos significativos, dependen principalmente de la concentración de dióxido de carbono en el envase. Entre los grupos nuevos significativos hay una bacteria, Brochothrix thermosphacta (antes Microbacterium thermosphactum) que es un bacilo pequeño, Gram positivo e inmóvil. Como las pseudomonas, disminuye en los envases impermeables, pero en los permeables a veces representa el 20-30 % de la flora alterante total.


Brochothrix thermosphacta en agar sangre a 37°C (atlas.sun.dk)

Contrariamente a las pseudomonas, B. thermosphacta no se afecta por la presencia de dióxido de carbono y corrientemente alcanza recuentos altos en la carne de cordero y de cerdo, sobre todo cuando se envasan en películas de permeabilidad intermedia, cuyos envases acumulan algo de dióxido de carbono si bien contienen todavía niveles bajos de oxígeno.Para prolongar la vida de almacén de la came envasada en películas impermeables se les ha incorporado conscientemente dióxido de carbono y los problemas de pérdida de color se han minimizado con el empleo de mezclas de CO2:O2.

En este principio se basa el envasado en atmósferas controladas (CAP), existiendo pruebas que indican que a las concentraciones utilizadas (por ej., 40 % de CO2 y 60 % de O2), la mezcla resulta inhibidora para los microorganismos, si bien en los últimos estadíos predominan las bacterias lácticas. Otras mezclas a base de dióxido de carbono y nitrógeno (por ej., 20 % de CO2 y 80 % de N2) también prolongan la vida de almacén de estas carnes. Como se ha dicho más atrás, los micrococos son los principales tipos de bacterias que se desarrollan a las concentraciones salinas del bacon o del jamón crudo, cuando se almacena a temperatura ambiente (unos 20 ºC). Cuando este bacon se almacena envasado a vacío, los micrococos siguen predominando y su número alcanza unos 107 por gramo en aproximadamente 9 días de almacenamiento.

En torno a las 2 semanas la alteración es evidente, caracterizándose por un olor rancio.En el bacon de menor concentración salina la flora inicial es más variada y los recuentos máximos se alcanzan también en torno a los 9 días observándose la alteración unos pocos días después.

En estas circunstancias la flora microbiana se compone de proporciones aproximadamente iguales, de micrococos, estreptococos (esto es enterococos) y otras bacterias lácticas (lactobacilos y leuconostoc); a temperaturas de almacenamiento altas (por ej., 25 ºC) las bacterias Gram negativas (por ej., Vibrio sp. y Proteus sp.) son las responsables de la putrefacción. Una de las ventajas del almacenamiento en frío, es que se requieren de 3 – 4 semanas para que el recuento microbiano alcance el máximo y por lo tanto la alteración se retrasa hasta 5 semanas. Los cambios cualitativos de la microflora durante el almacenamiento reflejan la influencia de la concentración salina y la flora es esencialmente igual a la del bacon envasado a vacío a temperaturas mayores.

Con respecto a la carne de las aves domésticas comercializadas para consumo (pollos y gallinas, pavos y patos), al llegar éstas a la planta faenadora, albergan un gran número de microorganismos, de muchos tipos diferentes, en sus plumas, patas e intestinos. El escaldado para facilitar el desprendimiento de las plumas se realiza por inmersión de las aves, durante 30 segundos en un tanque de agua caliente (55 ºC aproximadamente). Debido al efecto de lavado y a la destrucción de las bacterias más termosensibles, entre las que figuran las alterantes psicrótrofas, disminuye el número de microorganismos de la canal.

Las bacterias psicrótrofas se destruyen incluso cuando se emplean temperaturas de escaldado más bajas (unos 50 ºC para las aves cuyas canales se enfriarán por aire). Las desplumadoras mecánicas aumentan la carga microbiana de la piel de las aves y pueden ocasionar contaminaciones cruzadas y problemas por «aerosoles». La evisceración también aumenta la carga microbiana al extender por la superficie los tipos fecales que pueden transferirse fácilmente a otras canales originando también problemas de contaminación cruzada.


Desplumado y escaldado en planta (mundoavicola.com)

La carga microbiana alcanza el máximo inmediatamente antes de proceder al lavado, por lluvia o aspersión, de las canales. Esta operación que disminuye aproximadamente un 90 % de la carga microbiana de la canal va seguida de la refrigeración que puede realizarse por tres métodos. En los mataderos pequeños generalmente se lleva a cabo en tanques estáticos que contienen iguales cantidades de canales de aves y de agua con hielo.

Las canales pueden permanecer en estos tanques varias horas y las situadas en las proximidades del fondo se contaminan mucho con las bacterias arrastradas por el agua de las canales situadas superiormente; por lo tanto, en estas condiciones se favorece el desarrollo de las bacterias psicrotrofas. En mataderos mayores se utilizan corrientemente enfriadoras mecánicas giratorias. Este sistema utiliza una, dos o tres unidades en serie, cada una de las cuales está formada por un tanque grande por el que fluye continuamente agua clorada en una dirección mientras las canales avanzan en dirección opuesta merced a un tornillo sin fin; el enfriamiento se mejora añadiendo hielo a una o más unidades.

Además de enfriar conveniente las canales, si este sistema se utiliza convenientemente, disminuye la carga microbiana de las últimas en un 90 % aproximadamente y su eficacia depende del flujo controlado de agua clorada.

El último sistema es el enfriamiento por aire. Este método empleado cuando las canales van a venderse como tales, deseca la piel y por lo tanto retrasa el crecimiento de las bacterias alterantes psicrótrofas. Después del enfriamiento preliminar los recuentos microbianos de la piel de las aves varían de 5 – 103 a 1 – 105 por cm2, mientras que los recuentos de la cavidad abdominal son generalmente <1 – 104/cm2; los recuentos más bajos corresponden a las líneas de carnización que funcionan higiénica y eficientemente. En esta fase la microflora es muy compleja cualitativamente y entre los grupos bacterianos más corrientemente aislados figuran micrococos, flavobacterias y varios tipos intestinales, como Escherichia, Enterobacter y Streptococcus sp., y también Acinetobacter sp.

Cuando las canales se mantienen a temperaturas de refrigeración la mayor parte del crecimiento microbiano tiene lugar en la piel y con menor intensidad en la superficie interna de la cavidad visceral. Durante unos 10 días, aproximadamente, el número de bacterias aumenta en la piel hasta alcanzar un máximo de 109 – 1010/cm2. Este aumento se acompaña de la aparición de olores anormales (con recuentos de 107 bacterias/cm2, aproximadamente), de una abundante producción de limo (con recuentos de unos 108 bacterias/cm2) y de un aumento del pH hasta aproximadamente 7,5 y por lo tanto, como era de esperar, la alteración de la carne de aves se parece mucho a la de otras especies.

Además, como en la carne de mamíferos, la flora alterante de la carne de aves refrigerada está dominada por Pseudomonas sp. (tanto fluorescentes, como carentes de esta propiedad).

De hecho, en las fases avanzadas de alteración de las aves en refrigeración, su piel presenta con frecuencia fluorescencia al iluminarla con luz ultravioleta, lo que se debe a la presencia de gran número de pseudomonas fluorescentes. En el momento de la alteración las pseudomonas representan del 70 al 80 % de la flora, pero también hay en menor número Acinetobacter sp. (un 10 % aproximadamente) y Alteromonas (Pseudomonas) putrefaciens. Este último microorganismo es muy interesante dado que su crecimiento es mucho más rápido en la pierna de las aves (pH = 6,5) que en la pechuga (pH = 5,8).

Con el empleo de la cromatografía en fase gaseosa y de la espectrometría de masas se han intentado identificar los olores extraños producidos durante la alteración de las canales de pollo en refrigeración. En estas condiciones se producen unas 22 sustancias volátiles y 15 de ellas se deben al ataque microbiano del tejido muscular, siendo las responsables, o estando asociadas, a los característicos olores extraños de las últimas fases de la alteración. Entre estos 15 productos figuraban: ácido sulfhídrico, metil mercaptan, dimetil sulfuro, acetato de metilo, acetato de etilo, metanol, etanol y benzaldehído; la gran variedad de productos identificados ilustra claramente la complejidad de este problema en lo que se refiere al papel de los microorganismos en la alteración.

Entrando ahora en el apartado de pescados y mariscos, podemos afirmar que la mayoría de los estudios microbiológicos del pescado se refieren a las variedades marinas que serán las únicas que normalmente hemos de consumir, ya sean de mar o de río. Se acepta generalmente que la musculatura de los peces sanos, recién capturados, es estéril, aunque se han encontrado bacterias en número variable en tres regiones del pescado: la capa mucosa, las branquias y los intestinos.


Productos de la pesca, frescos (Getty Images)

Las cifras señaladas para la piel varían de 102 a 107 por cm, para las branquias o agallas de 103 a 106 por gramo y para el intestino de 103 a 108 por ml de contenido entérico. Sin embargo, se ha señalado que las cifras más pequeñas de las indicadas corresponden a las bacterias del pescado procedente de aguas sin contaminar, mientras que las más altas son consecuencia de unas pobres condiciones higiénicas a bordo durante las primeras fases de manipulación. Las variaciones de los ambientes marinos afectan a los tipos de bacterias de la piel y agallas de los peces recién capturados. Así en los mares más fríos del hemisferio norte la flora bacteriana está dominada por los bacilos psicrótrofos Gram negativos: Pseudomonas sp. (60 %), Acinetobacter/Moraxella (14 %).

La evísceración del pescado a bordo extiende la flora intestinal por su superficie. Los principales microorganismos encontrados en los intestinos pertenecen a Vibrio sp., si bien hay otros muchos géneros. El pescado se lava después con agua de mar y se almacena en hielo triturado o congelado, si ello es posible. El método tradicional es el almacenamiento con hielo por lo que lo estudiaremos con cierto detalle.

El hielo en el que se pretende conservar el pescado corrientemente está, a su vez, contaminado (unos 103 microorganismos por ml de agua de fusión) y además las bodegas de los barcos de pesca contienen generalmente una flora propia compuesta de Pseudomonas y Acinetobacter sp. Por lo tanto, cuando se coloca en hielo el pescado, que ya contiene una proporción bastante grande de pseudomonas, es muy probable que se contamine más con estos microorganismos. La alteración en el hielo es relativamente rápida, en parte por la proporción, relativamente grande, de pseudomonas que el pescado contiene inicialmente en la piel y en parte por el pH, relativamente alto, de muchas especies de pescado.


Productos de la pesca, frescos (Getty Images)

Incluso bajo las mejores condiciones a una temperatura de 10 ºC, los recuentos totales pueden superar los 108 por g, después de 12 a 14 días de almacenamiento. A veces en las bodegas de los barcos la temperatura llega a 6 – 7º C y en estas condiciones las cargas máximas se alcanzan en 5-6 días. La alteración del pescado es, por lo tanto, mucho más rápida que la de la carne cruda cuyos recuentos máximos se alcanzan únicamente después de 9-10 días de almacenamiento a 7 ºC. La calidad real del pescado desembarcado depende del tiempo que se mantuvo en hielo y de las condiciones higiénicas a bordo.

Los recuentos bacterianos medios del pescado descargado en puerto, de las bodegas de buques factoría, son aproximadamente 106 por cm2 de superficie de piel y cualitativamente la proporción de Pseudomonas sp., es mayor que en el pescado recién capturado.

Durante un prolongado almacenamiento en hielo las pseudomonas se convierten en el grupo dominante y representan el 80-90 % de la flora alterante cuando el recuento es máximo. Hasta en el pescado procedente de aguas cálidas las pseudomonas son el grupo predominante en el momento de la alteración y por lo tanto superan a la flora inicial formada principalmente por bacterias Gram positivas.

Después de desembarcado el pescado puede permanecer varias horas en cajas sin hielo. En estas condiciones su temperatura sube y el crecimiento de las bacterias psicrótrofas es más rápido, de manera que cabe esperar un aumento 10 veces mayor en pocas horas.

Las cajas de madera, usadas mucho todavía en tierra, contienen un gran número de bacterias, superando con frecuencia los recuentos de 106 por cm2; sin embargo, es probable que estas bacterias ejerzan muy poca influencia en la alteración del pescado, dado que el tiempo que permanece en las cajas se limita corrientemente a menos de 12 horas.

Entonces el pescado se reenvasa en otras cajas, generalmente con hielo, transportándose al lugar de procesado, en donde, dependiendo del tipo de pescado, se filetea o procesa de otro modo.

Todos estos hechos, incluido el fileteado y transporte, influyen en la flora bacteriana que se vuelve tanto más variada cuanto mayor es la manipulación. El pescado se altera como la carne, debido a sus enzimas autolíticas naturales y a la actividad bacteriana. La alteración se origina debido fundamentalmente a la actividad enzimática de bacilos Gram negativos, especialmente pseudomonas.

Durante el almacenamiento prolongado del pescado, independientemente de que se haga con hielo o sin él, estos microorganismos son invariablemente los que predominan.

Las bacterias alterantes utilizan primero los compuestos de bajo peso molecular, como nucleótidos y aminoácidos de la musculatura del pescado, siendo su degradación la responsable de los olores repugnantes y de otros signos de alteración; por lo tanto, las proteínas, igual que en la carne, juegan un papel poco importante en la alteración.

Para la salazón del pescado se utilizan dos técnicas básicas, la «seca» y la «húmeda». En la primera, empleada principalmente para la salazón de arenques en barril, se extiende sal en la superficie del pescado que se deposita en capas separadas por otras de sal. En el salado húmedo el pescado se sumerge en una solución de sal; este método se sigue cuando el pescado ha de ahumarse. En ocasiones se emplea una combinación de los métodos seco y húmedo.


Pescado en salazón (Getty Images)

Independientemente del método seguido, la sal adicionada rebaja a la aw del pescado, como ya se ha estudiado en las carnes curadas, lo que tiene una gran influencia en los tipos corrientes de alteración. La flora normal del pescado, predominantemente Gram negativa, es relativamente sensible a las concentraciones altas de sal por lo que su número disminuye.

La flora final depende de la fuerza de la salmuera. En muchas ocasiones los micrococos son la flora dominante, pero a concentraciones salinas mayores los problemas alterantes se deben a veces a un grupo especializado de bacterias. Estas bacterias, representadas por los géneros Halobacterium y Halococcus, se denominan «halófilas obligadas» y toleran concentraciones de sal mayores del 20 % de NaCl; de hecho para poder desarrollarse necesitan medios de cultivo con 10-15 % de NaCl. La alteración que originan es una coloración roja de la superficie del pescado (pescado «rosado») y se debe al crecimiento de estos microorganismos que producen un pigmento rojo.

Otro tipo de alteración, conocido como «oscurecimiento» se debe a un moho halofílico, Sporendonema expizoum; se asocia a la producción de manchas obscuras que se aprecian en la superficie carente de piel del pescado salado, sobre todo bacalao, y cuya intensidad varía del chocolate al marrón. El pescado ligeramente salazonado también es sensible a la producción de limo originado por la flora autóctona Gram negativa (sobre todo pseudomonadáceas); se caracteriza por la presencia en la superficie del pescado de una capa viscosa y pegajosa, de color beige.

Para tratar a un pescado antes de ahumarse se lo eviscera y sufre un tratamiento con sal cuya concentración de NaCl depende del nivel deseado en el pescado. La salazón es relativamente suave y por lo tanto su acción conservadora es mínima, como sucede con el salmón y bacalao ahumados.


Pescado ahumado (Getty Images)

En ciertos pescados, como arenques «rojos» y salmón escandinavo, el salado es más intenso y juega un importante papel en la conservación del pescado. Después de someterse a la acción de la sal, el pescado se ahuma en «frío» o en «caliente». En el ahumado frío, empleado corrientemente, la temperatura del pescado no debe superar la de desnaturalización de sus proteínas (unos 30 ºC).

El proceso que acarrea, tanto la desecación del pescado, como su impregnación con humo de madera, determina una disminución del número de bacterias, debido principalmente a las sustancias fenólicas del humo; sin embargo, globalmente los efectos de este procesado en la flora microbiana son poco importantes.

En el ahumado en caliente, empleado con ciertos productos especiales enlatados, como brisling (espadines) y sild (arenques pequeños) la temperatura del pescado llega hasta, por ejemplo, 70 ºC durante 30 minutos, con lo que sólo sobreviven las bacterias termorresistentes. Los cambios microbiológicos que acaecen durante el almacenamiento del pescado ahumado no se han estudiado con detalle, pero los microorganismos predominantes en el momento de la alteración dependen mucho de las condiciones de procesado. En el sometido a un salmuerado ligero y a un ahumado frío suelen predominar las pseudomonadales, pero un ligero aumento en la concentración de sal determina que sean los micrococos los dominantes.

Una de las causas más corrientes de alteración del pescado ahumado es la contaminación con mohos; tanto Penicillium, como Aspergillus sp. que crecen fácilmente a temperaturas de refrigeración, se encuentran en el serrín empleado para la producción de humo y pueden desarrollarse después en el pescado almacenado.

A concentraciones más altas de sal, la vida de almacen del pescado ahumado se prolonga varias semanas o meses, incluso a temperaturas ambientales altas, siendo de esperar pocos cambios en su flora microbiana.


Gambas en hielo (alamy.es)

Con respecto a los mariscos, es sus diversas variedades, tenemos que las gambas recién capturadas son muy perecederas debido a la actividad bacteriana y enzimática. La actividad bacteriana se favorece mucho por el gran contenido de aminoácidos y enzimas anfoliticas (proteasas) degradan rápidamente las proteínas proporcionando a las bacterias un sustrato de crecimiento ideal. Debido a su naturaleza perecedera las gambas se someten, tan pronto como es posible después de su captura, a congelación o ebullición, aunque tampoco es raro conservarlas con hielo.

Su flora microbiana inicial es semejante a la del pescado recién capturado, pero su almacenamiento en hielo determina un aumento de la proporción de especies de Acinetobacter/Moraxella que llegan al 80 % de la flora total en el momento de la alteración.

Sin embargo, Alteromonas sp. y las pseudomonadales juegan un papel secundario en la alteración de este alimento; la alteración se acompaña del aumento del amoníaco, trimetilamina, hipoxantina y ácido acético. Los cambios autolíticos son especialmente manifiestos en las langostas, lo que las convierte en otro alimento fácilmente perecedero. Estos enzimas (proteasas) se emplean en su «acondicionamiento» que requiere un almacenamiento en hielo de 2 – 4 días.

Como en las gambas el prolongar el almacenamiento determina un aumento manifiesto de la proporción de Acinetobacter y Moraxella que son los que predominan en el momento de la alteración.

La carne de los cangrejos también se altera rápidamente por lo que deben tratarse con agua hirviendo inmediatamente de capturados. En los cangrejos los estudios se han concentrado en la bacteriología de la carne cocida: parece lógico que la flora microbiana en el momento de la alteración esté dominada también por Acinetobacter y especies análogas.


Molusco bivalvo (Getty images)

Probablemente los moluscos bivalvos que más frecuentemente se consumen son las ostras, vieiras y mejillones. El problema microbiológico más importante asociado con estos alimentos es el riesgo de toxiinfección alimentaria debido a la contaminación, relativamente frecuente, del hábitat en donde se desarrollan.

Por lo tanto, se necesita depurar estos alimentos en agua limpia clorada. De aquí que la flora natural de los bivalvos cambie mucho durante el tratamiento y que las características de la alteración varíen dependiendo de la eficacia del proceso de depuración.

Un detalle importante de los bivalvos es la cantidad significativa de carbohidratos que presentan en su carne (3 – 6 %) y que influye en el tipo de alteración. Si durante la depuración no se eliminan las bacterias fermentativas, como Escherichia coli y otros coliformes, la alteración consistirá inicialmente en amargor al formarse ácidos a partir de los carbohidratos.

En los moluscos debidamente depurados, mantenidos a temperaturas de refrigeración, la alteración es totalmente distinta y va asociada a un aumento de las bases volátiles y de la hipoxantina, siendo Acinetobacter/Moraxella sp., la flora dominante.


Cefalópodo (Calamar) (Geoinnova.com)

1.4.2. Alteraciones en productos lácteos y derivados

Incluso cuando se obtiene en condiciones de asepsia, la leche contiene siempre microorganismos que proceden de los conductos galactóforos de la ubre de la vaca. Su número varía de cuarto a cuarto y de vaca a vaca, pero aproximadamente oscila entre 102 y 103 microorganismos por ml. En la práctica, la leche recién obtenida contiene unos 5 – 103 a 5 – 104 microorganismos por ml, constituidos por contaminantes procedentes del entorno de la ubre, del equipo de ordeño y de los manipuladores. Son muy variados los microorganismos que puede haber, entre ellos, Pseudomonas, Acinetobacter/Moraxella, Flavobacterium, Micrococcus, Streptococcus, Lactobacillus y coliformes. Además debe señalarse que las ubres infectadas (mastitis) introducen en la leche bacterias potencialmente patógenas.


Lácteos (Getty images)

Dado que la leche es un medio de crecimiento ideal para las bacterias, debe enfriarse tan rápidamente como sea posible. La introducción de tanques de refrigeración para toda la leche producida, junto con su recolección en cisternas refrigeradas ha influido mucho en la calidad bacteriológica de los aportes de leche cruda. La principal consecuencia de este cambio ha sido la disminución de la cantidad de leche alterada por acidificación. La acidificación o cortado de la leche a las temperaturas corrientes se debe a las bacterias lácticas que crecen preferentemente a temperaturas mayores de 10 ºC. Estas bacterias originan ácido láctico, a partir del azúcar de la leche (lactosa), que da lugar a un sabor ácido y más tarde a la coagulación de la leche. La mayoría de las bacterias lácticas se destruyen por pasterización, pero unas pocas son termodúricas (por ej., Streptococcus thermophilus) y pueden causar problemas después de la pasterización. Al enfriar y refrigerar rápidamente la leche los problemas son algo distintos. En la actualidad son los psicrótofos, sobre todo pseudomonas, los principales responsables de los problemas alterativos.

Las bacterias psicrótrofas, que proceden originalmente del suelo y agua, se aislan frecuentemente del equipo de ordeño de la granja, de las conducciones y de las cisternas de transporte. La refrigeración deficiente o el retraso en el enfriamiento de la leche aumenta mucho la proporción de psicrótrofos, pero su crecimiento continúa, aunque más lentamente, a las temperaturas de almacenamiento recomendadas para la leche cruda (3 – 7 ºC). Los recuentos de bacterias psicrótrofas en los tanques de almacenamiento varían de 104 a 106 por dm2, dependiendo de la intensidad y tipo de contaminación y de las condiciones de almacenamiento. Una gran proporción de estos psicrótrofos produce proteasas y lipasas. Muchas enzimas no son afectadas por la pasterización; de hecho para inactivarlas se necesitan temperaturas de 150 ºC durante 10 segundos. Entre los defectos debido a las proteasas se incluye el amargor, siendo el enranciamiento el principal efecto deteriorante de las lipasas.

El proceso de esterilización implica el calentamiento de la leche a una temperatura lo suficientemente alta como para destruir todas las bacterias patógenas, como Mycobacterium tuberculosis, Salmonella sp. y Brucella sp. Al mismo tiempo se destruye la gran mayoría de otras bacterias, incluidas las alterantes por lo que aumenta la capacidad de conservación de la leche. La mayoría de la leche producida en el los principales paises productores y exportadores, se pasteuriza por el método de temperatura alta / tiempo corto (HTST) en el que la leche se mantiene a 72 ºC por lo menos 15 segundos y a continuación se enfría rápidamente a menos de 10 ºC; el método antiguo de temperatura baja / tiempo largo (LTLT) (63 ºC durante 30 minutos) todavía se utiliza ocasionalmente, pero a escala muy pequeña.

Las bacterias que resisten la pasteurización, debido a su termorresistencia innata, reciben el nombre de «termodúricas». Están constituidas fundamentalmente por unas pocas especies de Streptococcus (por ej., S. thermophilus), Micrococcus (por ej., M. luteus) y Corynebacterium (por ej., C. lacticum), junto con las esporas de ciertos Bacillus sp. sobre todo B. cereus. Estas bacterias se aíslan fácilmente del equipo lactológico y tuberías limpiados deficientemente, si bien su número en los tanques de almacenamiento es generalmente pequeño. La alteración de la leche pasteurizada mantenida a temperatura ambiente se debe principalmente a las bacterias termodúricas, siendo corrientemente B. cereus el organismo predominante en el momento de la alteración.

Esta bacteria produce el defecto conocido como «nata amarga» y es el responsable del cortado «dulce» de la leche pasteurizada (esto es, de la coagulación por renina sin formación de cuajada ácida).

Las bacterias psicrótrofas, tan importantes en la leche cruda, se destruyen fácilmente por pasteurización, pero sus enzimas no se afectan. Sin embargo, los psicrótrofos pueden constituir una causa importante de alteración de la leche pasteurizada, si después de aplicado este tratamiento tiene lugar la contaminación. Tal contaminación puede ser mínima, pero en condiciones de limpieza deficiente del utillaje es muy llamativa. Esta contaminación debe evitarse a toda costa, dado que la leche pasteurizada se almacena corrientemente a unos 7 ºC, temperatura a la que los psicrótrofos se desarrolla bien. La leche pasteurizada con una contaminación mínima, después de tratada, tiene una vida de almacén a 7 ºC de, al menos, 7 – 10 días.

La leche tratada a temperatura ultra alta (UHT) es una leche homogeneizada, sometida a una temperatura, no menor de 132 ºC durante, al menos, 1 segundo, proceso que convierte a la leche en prácticamente estéril.

La manera en que originalmente se esterilizaba la leche consistía en mantenerla a unos 100 ºC durante 30 minutos en botellas herméticamente cerradas; esta leche se caracterizaba por presentar un sabor «a cocida» y una textura muy cremosa que, junto con su aspecto más obscuro, la convertía en un producto poco atractivo.


Línea de UHT (google.sites.com)

La leche UHT carece de estas características y por lo tanto ha superado a la leche tradicional, esterilizada en las botellas. La leche UHT se envasa asépticamente en recipientes especiales de cartón (por ej., Tetrapak) que después se cierran con calor. Esta leche tiene el aspecto, el aroma y la calidad nutritiva de la pasterizada y permanece en condiciones aceptables varios meses, sin necesidad de refrigeración.

La alteración de la leche UHT tiene lugar ocasionalmente debido al crecimiento de bacterias esporuladas, principalmente Bacillus stearothermophilus y B. subtilis, cuyas esporas o sobrevivieron al tratamiento o contaminaron a la leche procesada. Es más corriente la alteración a consecuencia de la actividad continuada de proteasas y lipasas termoestables producidas por las bacterias psicrótrofas en la leche cruda.

La gelación de la leche UHT, que también puede origiriarse por un proceso químico, es igualmente producido por las proteasas. Entre los derivados lácteos, la manteca o mantequilla, comparativamente con otros, es un producto microbiológicamente estable ya que contiene poca humedad (15 %) y mucha grasa (80%). El agua se presenta en forma de una fina emulsión en la fase grasa y las condiciones físicas de las gotitas de agua posiblemente ejercen un efecto inhibidor en el crecimiento microbiano. Además muchas mantequillas se salan hasta concentraciones que varían del 3 al 13 % de NaCl, lo que ayuda a su conservación.

La fuente principal de microorganismos de la mantequilla es la crema con la que se elabora; en el caso de la mantequilla «dulce» se somete a pasterización. El batido de la crema para obtener mantequilla aumenta el número de microorganismos que se concentran en la mazada, pero al terminar el procesado su número es pequeño en la mantequilla y en las muy saladas se produce una disminucion mayor durante el almacenamiento. Algunas mantequillas «dulces» se elaboran con un cultivo iniciador. Este cultivo, formado por bacterias conocidas, se inocula en la leche o crema para facilitar su acidificación en condiciones controladas, con lo que se alcanzan.en la mantequilla las características prefijadas y deseadas; en las mantequillas «dulces», la crema, una vez inoculada, se mantiene a temperaturas bajas para evitar que aumente la acidez antes del batido.

Las mantequillas «ácidas» corrientemente se fabrican con crema pasterizada, inoculada con microorganismos iniciadores (Streptococcus lactis y S. cremoris generalmente); la crema se inocula a temperatura ambiente hasta que se alcanza un pH bajo (4,5-5). A continuación se bate, pero no se sala, ya que la sal y el ácido reaccionan dando aromas desagradables. Para producir ácido se necesitan recuentos bacterianos altos (107 a 108 por gramo).

Como alternativa se permite la acidificación natural de la crema que se pasteriza después, antes del batido. Por lo tanto el contenido microbiano de las mantequillas recientes varia mucho, dependiendo del proceso de elaboración seguido; las «dulces» contienen muchos menos microorganismos que las «ácidas».

La alteración de la mantequilla puede tener origen microbiano, enzimático o químico; muchos de los aromas perjudiciales proceden de la crema, pero este tipo de deterioro no se estudiará aquí. La alteración microbiana se debe principalmente a las bacterias psicrótrofas ya que la mantequilla se almacena corrientemente en refrigeración.

Las pseudomonadales y otros bacilos Gram negativos afines, que llegan al producto después de pasterizado, son corrientemente responsables de la rancidez producida por la hidrólisis de la grasa de la mantequilla, con liberación de ácidos grasos.

La actividad proteolítica de Alteromonas putrefaciens, al desarrollarse en la superficie de la mantequilla da lugar a la aparición de olores pútridos y de pigmentaciones superficiales.

Los mohos también pueden crecer superficialmente originando coloraciones, generalmente están implicados miembros de los géneros: Alternaria, Cladosporium, Aspergillus, Penicillium, Mucor y Rhizopus. Las lipasas de la crema pueden inducir rancidez y entre las reacciones químicas se incluye la oxidación de las grasas insaturadas.

En otro apartado, tenemos que existen unas 400 variedades conocidas de quesos que se agrupan en unas 20 clases. La mayoría de ellas se elaboran con la misma leche variando los microorganismos, enzimas y sal adicionados y cambiando la temperatura durante la elaboración y maduración.

Los quesos se clasifican por su textura y por su grado de dureza, admitiéndose dos grandes grupos: el primero, quesos madurados, varía desde los quesos muy duros, con poca humedad, quesos para rallar (por ej., parmesano), pasando por los duros (por ej., Cheddar), a los semiblandos, con mayor humedad (por ej., Stilton) y blandos (por ej., Camembert).

El segundo grupo lo constituyen los quesos blandos sin madurar, con un gran contenido de humedad (por ej., cottage). La mayoría de los quesos se fabrican utilizando el mismo proceso básico. Actualmente se emplea generalmente leche pasterizada, pero la maduración acaece más lentamente y debido a que la flora natural ha sido en gran parte destruida, deben adicionarse a la leche cultivos bacterianos iniciadores.


Elaboración de quesos (google.sites.com)

En el caso del queso Cheddar los cultivos iniciadores consisten en mezclas de diversas estirpes de Streptococcus lactis o en una mezcla de S. lactis y S. cremoris. Estas bacterias convierten la lactosa en ácido láctico, dando lugar a la primera fase de la elaboración de queso, esto es, a la acidificación o «maduración» de la leche. Cuando la leche ha alcanzado la acidez requerida, se le adiciona la renina que ayuda a la formación de la cuajada.

Las últimas fases del proceso consisten en tratar la cuajada que, después de salada y prensada, se deja madurar; en el queso Cheddar la maduración dura unos 4 meses. El número máximo de microorganismos lactobacilos en los quesos madurados, representan el 99 % de la población.

Durante la maduración, los lactobacilos descomponen lentamente la proteína, lo que ayuda a la aromatización del queso (L. acidophilus). Al estudiar la alteración de los quesos debe hacerse hincapié en que los más duros, con menor contenido de humedad, tienen una vida de almacen más larga que los que son blandos.

La alteración microbiológica del queso Cheddar madurado se debe principalmente al crecimiento de mohos en la superficie que originan pigmentaciones, si bien penetran poco en el queso. Son muchos los mohos y levaduras implicados en este tipo de alteración, como Penicillium (da coloración verde), Cladosporium (verde a negra) y Candida (negra).

Sin embargo, los quesos más duros poseen una capa de recubrimiento de cera o presentan corteza, lo que minimiza el problema. En los últimos años se han hecho populares los quesos envasados a vacio en películas, tipo de envasado que evita el desarrollo fúngico al excluirse el aire.


Queso envasado al vacío (google.sites.com)

La alteración bacteriana de los quesos es más corriente durante su elaboración y maduración. Si el pH es demasiado alto, las pseudomonas, que son contaminantes siempre presentes, aunque en pequeño número, crecen rápidamente y originan viscosidad. El queso «gaseado» es un problema bastante corriente, debido a coliformes como Enterobacter sp., que fermentan la lactosa con producción de dióxido de carbono; algunos clostridios también dan lugar a este defecto. Se puede controlar añadiendo al queso nisina, un antibiótico producido por ciertas cepas de Streptococcus lactis. Este antibiótico es especialmente activo frente a clostridios de los quesos que poseen un pH alto. En los quesos pueden presentarse diversos defectos del sabor, siendo los más importantes el amargor y la rancidez; muchos de estos defectos se deben a microorganismos. Durante la elaboración no suelen surgir problemas si se utilizan buenos cultivos iniciadores y se mantiene un alto nivel higiénico.

El yogur es un producto lácteo fermentado elaborado por adición de un cultivo iniciador mixto (Lactobacillus bulgaricus y Streptococcus thermophilus) a la leche que se ha tratado térmicamente para destruir su flora autóctona. Como en el queso, durante la incubación a unos 45 ºC, se produce ácido láctico, lo que hace bajar el pH a 4,0; a sus características aromáticas contribuyen cantidades vestigiales de otros productos, como el diacetilo y el acetaldehído.


Yogur entero natural (google.sites.com)

Después de la incubación el yogur se enfría rápidamente a 4 ºC para evitar que continúe produciéndose ácido; su almacenamiento a baja temperatura y la acidez del producto aseguran su conservación frente a la alteración por bacterias proteolíticas y otras que no toleran la acidez. Los microorganismos iniciadores continúan creciendo a la temperatura de almacenamiento muy lentamente, lo que limita su vida útil de almacen a unas 4 semanas, pasadas las cuales el exceso de ácido producido altera su aroma.

1.4.3 Alteraciones en huevos y ovoproductos

Se admite generalmente que el huevo de gallina es estéril en el momento de la puesta, salvo que se haya infectado congénitamente, normalmente por salmonelas. La contaminación del huevo acaece después de la puesta y el acceso más corriente de los microorganismos al interior de aquél tiene lugar a través de grietas de la cáscara. La cáscara, que está cubierta por una membrana que repele el agua, actúa como una barrera mecánica, si está intacta. Otra forma distinta de penetración de los microorganismos, es a través de los poros que atraviesan la cáscara. Los poros están obturados, pero en los más grandes los «tapones» obturantes pueden faltar o cerrar dificientemente. La penetración se facilita por la humedad incorporada a los poros por efectos capilares. Debajo de la cáscara hay dos membranas que dificultan más la invasión bacteriana durante un tiempo limitado, pero que probablemente no constituyen barrera a las hifas infiltrativas de los mohos.


Huevo de gallina (google.sites.com)

La clara de los huevos contiene una serie de agentes antimicrobianos que limitan o inhiben por completo el crecimiento de aquellos microorganismos invasores con tal que los niveles de contaminación sean bajos.

La lisozima es muy eficaz frente a bacterias Gram positivas cuyas paredes celulares lisa, mientras que la conalbúmina, que es activa lo mismo frente a bacterias Gram positivas que Gram negativas, actúa como agente quelante, ligando el hierro que es esencial para el crecimiento.

Sin embargo, la yema es una buena fuente de nutrientes y no contiene agentes inhibidores; por lo tanto cuando está implicada la yema, los microorganismos invasores crecen rápidamente. Esto puede ocurrir a los 10 días de puesto el huevo, cuando la yema contacta con la porción de aquél que ocupa la posición más alta.

Si la penetración del huevo ha tenido lugar en la zona de la membrana testácea que contacta con la yema, los mecanismos de defensa del huevo sufren un «corto- circuito» por lo que cabe esperar que las bacterias invasoras se desarrollen rápidamente, fundamentalmente las bacterias Gram negativas.

Aunque el contenido interno de los huevos frescos es generalmente estéril, los ovoproductos elaborados comercialmente (líquidos, congelados o desecados) suelen estar muy contaminados con bacterias. Especialmente en el caso de los huevos líquidos enteros se ha visto que frecuentemente están contaminados con salmonelas que resisten las temperaturas, relativamente bajas, utilizadas corrientemente por la industria panadera.

En Argentina (SENASA) se promulgaron normas sobre tratamiento térmico y desde entonces todos los huevos líquidos enteros que vayan a distribuirse refrigerados, para su conservación por congelación o por desecación-atomización, deben pasterizarse a 64,4º C durante 2 minutos y medio y a continuación enfriarse inmediatamente.

Las salmonelas más termorresistentes se destruyen con este tratamiento sin que se alteren las características de los huevos que se buscan en la industria panadera.De otra parte los huevos líquidos enteros, sometidos a pasterización y mantenidos en refrigeración permanecen en buenas condiciones, 6 días al menos, sin aumentos significativos de sus recuentos bacterianos, si bien debe evitarse la contaminación post- pasterización que se debe principalmente a coliformes.

Las claras se pasterizan de forma convencional, aunque todavía no sean obligatorias las normas que controlan su tratamiento térmico.

La clara refrigerada, sin tratar por el calor, es alterada generalmente por pseudomonas y otros bacilos Gram negativos parecidos, mientras que en la pasterizada predominan, como agentes alterantes, los estreptococos fecales y los lactobacilos. Para destruir las salmonelas de las yemas líquidas se necesitan tratamientos térmicos más intensos, pero tampoco están en vigor las reglamentaciones o normas correspondientes.


Ovoproductos (google.sites.com)

1.4.4 Alteraciones en vegetales

Las verduras y frutas tan pronto como se recolectan experimentan cambios fisiológicos, algunos de los cuales determinan pérdidas de calidad.

La actividad respiratoria implicada en la degradación de carbohidratos por las enzimas vegetales continúa y los cambios inducidos, sean ventajosos o perjudiciales, se ven muy influenciados por la madurez del vegetal en el momento de la recolección; por lo tanto los productos vegetales corrientemente pueden almacenarse bastante tiempo con pequeños cambios de calidad, si se recolectaron en el momento oportuno.

Muchas frutas carnosas, como el plátano, se cosechan antes de su maduración que continúa después, pero las frutas cítricas sólo maduran satisfactoriamente en el árbol.


Vegatales y frutas (google.sites.com)

El bajo pH (<4,5) de la mayoría de las frutas significa que su alteración se deberá fundamentalmente a los hongos.

De otra parte el intervalo de pH de la mayoría de las hortalizas varía entre 5 y 7 por lo que su alteración podrán realizarla tanto mohos como bacterias, si bien los primeros constituyen el grupo principal. De acuerdo con sus características alterativas los hongos se clasifican, de forma un tanto arbitraria, en dos grupos: los patógenos vegetales que atacan al vegetal antes de su recolección y los saprófitos que lo hacen después de la recolección.

Una caracterítica importante de la mayoría de los microorganismos alterantes, tanto fúngicos como bacterianos, es su capacidad de secreción de enzimas pectolíticas que ablandan y desintegran los tejidos vegetales. Por lo tanto, el crecimiento de mohos en frutas y verduras generalmente causa una grave desintegración tisular originando zonas blandas mohosas; este tipo de alteración se conoce como «podredumbre». Los nombres que reciben las distintas podredumbres se basan en el aspecto del alimento alterado.

Un agente importante de alteración es Penicillium, muchas de cuyas especies atacan a las frutas; posiblemente hasta el 30 % de todas las frutas alteradas se deben a este género. También son sensibles muchas verduras carnosas, como tomates y pepinos, así como patatas y remolachas. Otra importante alteración es la podredumbre blanda por Rhizopus que afecta a muchas frutas y hortalizas, especialmente durante el transporte en condiciones deficientes de refrigeración. Las frutillas y las papas, una vez recolectadas, son atacadas a menudo y su alteración se presenta en forma de áreas blandas y mohosas con un micelio grisáceo que se aprecia fácilmente. Aunque las bacterias tienen una importancia limitada en la alteración de las frutas, en torno al 35 % de las pérdidas por alteración microbiana de los productos vegetales tienen este origen.

Las bacterias responsables son principalmente miembros de los géneros Erwinia y Pseudomonas. Las formas más corrientes de alteración son las podredumbres blandas bacterianas que afectan a la mayoría de las hortalizas. La podredumbre blanda bacteriana también da lugar a infecciones antes de la recolección. Ciertas erwinias y pseudomonas, son importantes agentes patógenos de los vegetales, en los que producen enfermedades como royas, marchitamientos, úlceras y manchas en las hojas.

Las bacterias causantes de podredumbre blanda, de las que Erwinia carotovora es la más importante, se encuentran en las plantas en el momento de su recolección y generalmente penetran en ellas a través de lesiones tisulares. El crecimiento de estos microorganismos es tan rápido que los mohos no pueden competir por lo que generalmente no se aíslan de los vegetales que padecen podredumbre blanda bacteriana. Las bacterias causantes de ablandamiento forman muy pronto enzimas pectolíticas que en pocos días originan una gran degradación tisular. En el caso de las patatas todo el tubérculo puede convertirse en una masa blanda; en los tomates la piel puede permanecer intacta, mientras todo el resto se convierte en un líquido turbio y las verduras foliares se transforman en masas semilíquidas.

Muchos microorganismos llegan a contaminar los productos vegetales durante su recolección y manipulación posterior. Por lo tanto conviene emplear un utillaje tan limpio como sea posible y minimizar las lesiones mecánicas de los productos vegetales; muchos de los microorganismos del exterior de frutas y verduras pueden eliminarse lavándolas con agua, si bien esta operación puede acortar su vida de almacen si no se escurren convenientemente.

Es imprescindible un buen almacenamiento para reducir al mínimo el deterioro fisiológico y microbiológico. Corrientemente el almacenamiento se lleva a cabo en condiciones de frío (0 – 5 ºC), pero ciertos productos, como patatas y pepinos, se conservan mejor a 7 – 10 ºC.

La humedad relativa óptima oscila entre 85 – 95 % y la vida de almacén puede mejorarse, por ejemplo, en manzanas y peras, por almacenamiento en atmósfera controlada (disminuyendo la concentración de oxígeno y aumentando la de dióxido de carbono).

Las envolturas de plástico cerradas favorecen la presencia de alta humedad en su interior, lo que da por resultado un mayor deterioro microbiano.Las envolturas de plástico, con perforaciones, evitan en gran parte este problema, pero la humedad puede ser mayor que en los productos sin envolver.

Pueden emplearse diversos productos químicos como tratamiento pre o post- recolección. En el último caso, como medidas corrientes de control se emplean baños o aspersiones con fungicidas/bactericidas a base de bórax (tetraborato sódico), ácido sórbico, fenilfenatos, difenilo y yodóforos así como fumigaciones con polvos que contienen azufre o SO2.


Vegatales y frutas envasados (cadenaser.es)

1.4.5 Alteraciones en cereales y legumbres

La flora microbiana de los granos de cereales recién recolectados, como maíz, trigo y avena, pueden llegar a muchos millones de bacterias y mohos por gramo. Sin embargo, la baja Aw de los cereales inhibe eficazmente el crecimiento de todos los microorganismos siempre que las condiciones de almacenamiento sean las adecuadas, sin embargo, en condiciones de humedad es de esperar el crecimiento fúngico.


Cereales y legumbres (google.site.com)

Algunas fases implicadas en la fabricación de harina reducen la carga microbiana, siendo el blanqueado el más eficaz a este respecto. En las harinas convenientemente almacenadas los recuentos fúngicos permanecen constantes, unos pocos millares por gramo, siendo las especies más corrientemente aisladas las de los géneros Penicillium, Aspergillus y Rhizopus. Las bacterias disminuyen en número durante el almacenamiento, siendo corrientes los recuentos menores de 1.000 por gramo; Bacillus sp. es el grupo dominante. Cuando la humedad supera los límites normales es posible el desarrollo fúngico y silos niveles de Aw son todavía mayores ocurrirá el crecimiento de Bacillus sp.

El pan producido comercialmente tiene una humedad lo suficientemente baja como para inhibir el crecimiento de la mayoría de los microorganismos, exceptuados los mohos que son los principales agentes alterantes; de hecho, los mohos son los responsables del 1 % de las pérdidas anuales de la producción de pan, en promedio global. Entre los más corrientes figuran Rhizopus nigricans, el «moho del pan» que origina puntos negros característicos constituidos por esporangios, Penicillium y Aspergillus sp. que producen abundantes conidios verdes y Neurospora sitophila, el «moho rojo» del pan. La alteración fúngica la favorecen el cortado en rebanadas del pan, su envasado estando demasiado caliente y el almacenamiento en un ambiente cálido y húmedo.

La filamentosidad del pan, producida por Bacillus sp., raramente se ve ahora en el pan producido industrialmente. Se caracteriza inicialmente por manchas marrones que se acompañan de un olor desagradable y más tarde se produce desintegración de la miga y de las rebanadas; la alteración se debe a la hidrólisis de la proteína de la harina y del almidón que dan lugar a un pan pegajoso y filamentoso.


Pan mohoso (Getty images)

Como mejor se controla es mediante el almacenamiento a baja temperatura, con adición de conservadores (por ej., propionato de calcio o ácido sórbico) y empleando una harina de buena calidad. Los mohos son los responsables de la mayoría de los problemas alterativos de los productos de bollería, si bien la situación se complica por la gran variedad de ingredientes que puede incorporárseles, algunos de los cuales, como nata y crema de imitación, natillas y chocolates han estado implicados en brotes de toxiinfecciones alimentarias. Generalmente el crecimiento de mohos, también se controla, como en el pan, con temperaturas de almacenamiento bajas y niveles de Aw bajos, junto con el empleo de conservadores.


Pan lactal con Penicillum sp (Getty images)

Enfermedades transmitidas por los alimentos

Подняться наверх