Читать книгу Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic - Страница 13
References
Оглавление1 1 https://www.technologyreview.com/2019/09/18/132956/ibms-new-53-qubit-quantum-computer-is-the-most-powerful-machine-you-can-use/.
2 2 https://fortune.com/2020/09/15/ibm-quantum-computer-1-million-qubits-by-2030/.
3 3 https://www.nature.com/articles/nature.2013.12999.
4 4 Safavin, S.R. and Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21 (3): 660–674.
5 5 Fodor, I.K. A survey of dimension reduction techniques Lawrence Livermore Natl. Laboratory, 2002
6 6 C.O.S. Sorzano, Vargas, J., Pascual‐Montano, A., et al., A survey of dimensionality reduction techniques, https://arxiv.org/ftp/arxiv/papers/1403/1403.2877.pdf
7 7 Lin, Y.Y., Liu, T.L., and Fuh, C.S. (2011). Multiple kernel learning for dimensionality reduction. IEEE Trans. Pattern Anal. Machine Intell. 33: 1147–1160.
8 8 Jolliffe, I.T. (2002). Principal Component Analysis. Wiley.
9 9 Stanford https://cs231n.github.io/neural‐networks‐1
10 10 Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, 2e. Upper Saddle River, NJ: Prentice‐Hall.
11 11 D. Gunning. Explainable artificial intelligence (XAI), Defense Advanced Research Projects Agency (DARPA). Accessed: Jun. 6, 2018. [Online]. Available: http://www.darpa.mil/program/explainable‐artificialintelligence
12 12 A. Henelius, K. Puolamäki, and A. Ukkonen. (2017). “Interpreting classifiers through attribute interactions in datasets.” [Online]. Available: https://arxiv.org/abs/1707.07576
13 13 Letham, B., Rudin, C., McCormick, T.H., and Madigan, D. (2015). Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Ann. Appl. Statist. 9 (3): 1350–1371.
14 14 Krening, S., Harrison, B., Feigh, K.M. et al. (2016). Learning from explanations using sentiment and advice in RL. IEEE Trans. Cogn. Develop. Syst. 9 (1): 44–55.
15 15 W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” NIPS 2017, pp. 1024–1034, 2017.
16 16 T. N. Kipf and M. Welling, “Semi‐supervised classification with graph convolutional networks,” ICLR 2017, 2017.
17 17 A. Sanchez‐Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell, and P. Battaglia, “Graph networks as learnable physics engines for inference and control,” arXiv preprint arXiv:1806.01242, 2018.
18 18 P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende et al., “Interaction networks for learning about objects, relations and physics,” in NIPS 2016, 2016, pp. 4502–4510.
19 19 A. Fout, J. Byrd, B. Shariat, and A. Ben‐Hur, “Protein interface prediction using graph convolutional networks,” in NIPS 2017, 2017, pp. 6530–6539.
20 20 T. Hamaguchi, H. Oiwa, M. Shimbo, and Y. Matsumoto, “Knowledge transfer for out‐of‐knowledge‐base entities: A graph neural network approach,” in IJCAI 2017, 2017, pp. 1802–1808.
21 21 H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial optimization algorithms over graphs,” arXiv preprint arXiv:1704.01665, 2017.
22 22 Borgers, T. and Sarin, R. (1997). Learning through reinforcement and replicator dynamics. J. Econ. Theory 77: 1–14.
23 23 Brown, G. (1951). Iterative solutions of games by fictitious play. In: Activity Analysis of Production and Allocation (ed. T.C. Koopmans), 374–376. New York: Wiley.
24 24 Erev, I. and Roth, A. (1998). Predicting how play games: reinforcement learning in experimental games with unique mixed‐strategy equilibria. Am. Econ. Rev. 88: 848–881.
25 25 Fudenberg, D. and Kreps, D. (1993). Learning mixed equilibria. Behav. Ther. 5: 320–367.
26 26 Fudenberg, D. and Kreps, D. (1995). Learning in extensive form games I: self‐confirming equilibria. Games Econ. Behav. 8: 20–55.
27 27 Fudenberg, D. and Levine, D. (1993). Self‐confirming equilibrium. Econometrica 61: 523–546.
28 28 Fudenberg, D. and Levine, D. (1999). The Theory of Learning in Games. Cambridge: MIT Press.
29 29 Kalai, E. and Lehrer, E. (1993). Rational learning leads to Nash equilibria. Econometrica 61 (5): 1019–1045.
30 30 Kalai, E. and Lehrer, E. (1993). Subjective equilibrium in repeated games. Econometrica 61 (5): 1231–1240.
31 31 Robinson, J. (1951). An iterative method of solving a game. Ann. Math. Stat. 54: 296–301.
32 32 Hanzo, L. et al. (2012). Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless. Proc. IEEE 100: 1853–1888.
33 33 Nielsen, M.A. and Chuang, I.L. (2011). Quantum Computation and Quantum Information, 10e. New York, NY, USA: Cambridge University Press.
34 34 Imre, S. and Balázs, F. (2005). Quantum Computing and Communications: An Engineering Approach. Chichester, UK: Wiley.
35 35 Imre, S. and Gyongyosi, L. (2013). Advanced Quantum Communications: An Engineering Approach. Hoboken, NJ, USA: Wiley.
36 36 Lipton, R.J. and Regan, K.W. (2014). Quantum Algorithms via Linear Algebra: A Primer. Cambridge, MA, USA: MIT Press.
37 37 Hsieh, M.‐H. and Wilde, M.M. (2010). Entanglement‐assisted communication of classical and quantum information. IEEE Trans. Inf. Theory 56 (9): 4682–4704.
38 38 Hsiehand, M.‐H. and Wilde, M.M. (2010). Trading classical communication, quantum communication, and entanglement in quantum Shannon theory. IEEE Trans. Inf. Theory 56 (9): 4705–4730.
39 39 Wilde, M.M., Hsieh, M.‐H., and Babar, Z. (2014). Entanglement‐assisted quantum turbo codes. IEEE Trans. Inf. Theory 60 (2): 1203–1222.
40 40 Takeoka, M., Guha, S., and Wilde, M.M. (2014). The squashed entanglement of a quantum channel. IEEE Trans. Inf. Theory 60 (8): 4987–4998.
41 41 Inoue, K. (2006). Quantum key distribution technologies. IEEE J. Sel. Topics Quantum Electron. 12 (4): 888–896.
42 42 V. Sharma and S. Banerjee, “Analysis of quantum key distribution based satellite communication,” in Proc. Int. Conf. Comput., Commun. Netw. Technol., Jul. 2018, pp. 1–5.
43 43 Piparo, N.L. and Razavi, M. (May 2015). Long‐distance trust‐free quantum key distribution. IEEE J. Sel. Topics Quantum Electron. 21 (3): 123–130.
44 44 Calderbank, A.R. and Shor, P.W. (1996). Good quantum error‐correcting codes exist. Phys. Rev. A 54: 1098–1106.
45 45 Steane, A. (1996). Error correcting codes in quantum theory. Phys. Rev. Lett. 77: 793–797.
46 46 Kovalev, A.A. and Pryadko, L.P. (2013). Quantum kronecker sum‐product low‐density paritycheck codes with finite rate. Phys. Rev. A 88 (1) https://doi.org/10.1103/physreva.88.012311.
47 47 Tillich, J.P. and Zemor, G. (2014). Quantum LDPC codes with positive rate and minimum distance proportional to the square root of the blocklength. IEEE Trans. Inf. Theory 60 (2): 1193.
48 48 Bravyi SB, Kitaev AY. Quantum codes on a lattice with boundary. arXiv:quant‐ph/9811052. 1998;.
49 49 Freedman MH, Meyer DA. Projective plane and planar quantum codes; 1998.
50 50 Nickerson, N.H., Fitzsimons, J.F., and Benjamin, S.C. (2014). Freely scalable quantum technologies using cells of 5‐to‐50 qubits with very lossy and noisy photonic links. Phys. Rev. X 4 (4): 041041.
51 51 Kelly, J., Barends, R., Fowler, A.G. et al. (2016). Scalablein situqubit calibration during repetitive error detection. Phys. Rev. A 94 (3).
52 52 Sete EA, Zeng WJ, Rigetti CT. A functional architecture for scalable quantum computing. In: 2016 IEEE International Conference on Rebooting Computing (ICRC). IEEE; 2016.
53 53 O'Gorman, J., Nickerson, N.H., Ross, P. et al. (2016). A silicon‐based surface code quantum computer. NPJ Quantum Inf. 2 (1) https://doi.org/10.1038/npjqi.2015.19.
54 54 Takita, M., Cross, A.W., C'orcoles, A. et al. (2017). Experimental demonstration of fault‐tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 119 (18): 180501. https://doi.org/10.1103/PhysRevLett.119.180501. Epub 2017 Oct 31. PMID: 29219563. Also arXiv:1705.09259v1 [quant‐ph] 25 May 2017.
55 55 Kitaev, A. (2003). Fault‐tolerant quantum computation by anyons. Ann. Phys. Rehabil. Med. 303 (1): 2–30. https://doi.org/10.1016/s0003‐4916(02)00018‐0.
56 56 S. Lloyd, M. Mohseni, and P. Rebentrost. (2013). “Quantum algorithms for supervised and unsupervised machine learning.” [Online]. Available: https://arxiv.org/abs/1307.0411
57 57 Dunjko, V., Taylor, J.M., and Briegel, H.J. (2016). Quantum‐enhancedmachine learning. Phys. Rev. Lett. 117 (13): 130501–130506.
58 58 Wittek, P. (2014). Quantum Machine Learning: What Quantum Computing Means to Data Mining. New York, NY, USA: Academic.
59 59 Oneto, L., Ridella, S., and Anguita, D. (2017). Quantum computing and supervised machine learning: training, model selection, and error estimation. In: Quantum Inspired Computational Intelligence (eds. S. Bhattacharyya, U. Maulik and P. Dutta), 33–83. Amsterdam, The Netherlands: Elsevier.
60 60 Plenio, M.B. and Virmani, S. (2005). An introduction to entanglement measures. Quantum Inf. Comput. 7: 1. arXiv:quant‐ph/0504163.
61 61 Horodecki, R., Horodecki, M., and Horodecki, K. (2009). Quantum entanglement. Rev. Mod. Phys. 81: 865. arXiv:arXiv:quantph/0702225v2.
62 62 Yukalov, V.I. and Sornette, D. Quantitative predictions in quantum decision theory. IEEE Trans. Syst.: 366–381. also arXiv:1802.06348v1 [physics.soc‐ph] 18 Feb 2018.
63 63 Ashtiani, M. and Azgomi, M.A. (2015). A survey of quantum‐like approaches to decision making and cognition. Math. Social Sci. 75: 49–80.
64 64 Yukalov, V.I. and Sornette, D. (2009). Scheme of thinking quantum systems. Laser Phys. Lett. 6 (11): 833–839.
65 65 W. Liu, J. Liu, M. Cui, and M. He, “An introductory review on quantum game theory,” in Proc. Int. Conf. Genetic Evol. Comput., Dec. 2010, pp. 386–389.
66 66 Brandt, H.E. (1999). Qubit devices and the issue of quantum decoherence. Prog. Quantum Electron. 22 (5–6): 257–370.
67 67 Lee, C.F. and Johnson, N.F. (2002). Exploiting randomness in quantum information processing. Phys. Lett. A 301 (5–6): 343–349.
68 68 D. Huang and S. Li, “A survey of the current status of research on quantum games,” in Proc. 4th Int. Conf. Inf. Manage., May 2018, pp. 46–52.
69 69 Qi, B., Zhu, W., Qian, L., and Lo, H.‐K. (2010). Feasibility of quantum key distribution through a dense wavelength division multiplexing network. New J. Phys. 12 (10): 103042.
70 70 Patel, K.A., Dynes, J.F., Lucamarini, M. et al. (2014). Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks. Appl. Phys. Lett. 104 (5): 051123.
71 71 S. Bahrani, M. Razavi, and J. A. Salehi, “Optimal wavelength allocation,” in Proc. 24th Eur. Signal Process. Conf., Budapest, Hungary, Aug./Sep. 2016, pp. 483–487.
72 72 Cao, Y., Zhao, Y., Yu, X., and Wu, Y. (2017). Resource assignment strategy in optical networks integrated with quantum key distribution. IEEE/OSA J. Opt. Commun. Netw. 9 (11): 995–1004.
73 73 Zhao, Y., Cao, Y., Wang, W. et al. (2018). Resource allocation in optical networks secured by quantum key distribution. IEEE Commun. Mag. 56 (8): 130–137.
74 74 Cao, Y., Zhao, Y., Colman‐Meixner, C. et al. (2017). Key on demand (KoD) for software‐defined optical networks secured by quantum key distribution (QKD). Opt. Express 25 (22): 26453–26467.
75 75 Nauerth, S., Moll, F., Rau, M. et al. (2013). Air‐to‐ground quantum communication. Nat. Photon. 7 (5): 382–386.
76 76 Vallone, G., Bacco, D., and Dequal, D. (2015, Art. no.). Experimental satellite quantum communications. Phys. Rev. Lett. 115 (4): 040502.
77 77 Liao, S.K., Cai, W.Q., and Liu, W.Y. (2017). Satellite‐to‐ground quantum key distribution. Nature 549 (7670): 43–47.
78 78 Liao, S.‐K. et al. (2017). Long‐distance free‐space quantum key distribution in daylight towards inter‐satellite communication. Nat. Photon. 11 (8): 509–513.
79 79 Liao, S.‐K., Cai, W.‐Q., and Handsteiner, J. (2018). Satellite‐relayed intercontinental quantum network. Phys. Rev. Lett. 120 (3): 030501.
80 80 Bacsardi, L. (2013). On the way to quantum‐based satellite communication. IEEE Commun. Mag. 51 (8): 50–55.
81 81 Simon, C. (2017). Towards a global quantum network. Nat. Photon 11 (11): 678–680.
82 82 P. Wang, X. Zhang, and G. Chen, “Quantum key distribution for security guarantees over quantum‐repeater‐based QoS‐driven 3d satellite networks,” in Proc. IEEE Global Commun. Conf., Dec. 2014, pp. 728–733.
83 83 Bedington, R., Arrazola, J.M., and Ling, A. (2017). Progress in satellite quantum key distribution. NPJ Quantum Inf. 3 (1): 30.
84 84 M. Pfennigbauer, W. Leeb, and M. Aspelmeyer, “Free‐space optical quantum key distribution using intersatellite links,” in Proc. CNESIntersatellite Link Workshop, 2003.
85 85 Huang, D. et al. (2020). Quantum key distribution over double‐layer quantum satellite networks. IEEE Access 8: 16087–16098. IEEE.
86 86 Pratt, S.R., Raines, R.A., Fossa, C.E., and Temple, M.A. (1999). An operational and performance overview of the IRIDIUM low earth orbit satellite system. IEEE Commun. Surv. Tuts. 2 (2): 2–10, 2nd Quart.
87 87 Bourgoin, J.‐P., Meyer‐Scott, E., Higgins, B.L. et al. (2013). A comprehensive design and performance analysis of low earth orbit satellite quantum communication. New J. Phys. 15 (2): 023006.
88 88 Günthner, K., Khan, I., Elser, D. et al. (2017). Quantum‐limited measurements of optical signals from a geostationary satellite. Optica 4 (6): 611–616.
89 89 Calderaro, L., Agnesi, C., Dequal, D. et al. (2018). Towards quantum communication from global navigation satellite system. Quantum Sci. Technol. 4 (1): 015012.
90 90 F. Yu. ScienceNet.cn, China. Accessed: Aug. 10, 2017. [Online]. Available: http://news.sciencenet.cn/htmlnews/2017/8/384831.shtm?id=384831. http://news.sciencenet.cn/htmlnews/2017/8/384831. 中国科学家࣋划建“量子星座”—新闻—科学网 (sciencenet.cn)
91 91 Kimble, H.J. (2008). The quantum internet. Nature 453 (7198): 1023–1030.
92 92 Nguyen, H.V. et al. (2017). Towards the quantum internet: generalized quantum network coding for large‐scale quantum communication networks. IEEE Access 5: 17288–17308.
93 93 Sun, Q.‐C. et al. (2016). Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photon. 10 (10): 671–675.
94 94 Yin, J. et al. (2017). Satellite‐based entanglement distribution over 1200 kilometers. Science 356 (6343): 1140–1144.
95 95 Briegel, H.‐J., Dür, W., Cirac, J.I., and Zoller, P. (1998). Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81: 5932–5935.
96 96 Dür, W., Briegel, H.‐J., Cirac, J.I., and Zoller, P. (1999). Quantum repeaters based on entanglement purification. Phys. Rev. A Gen. Phys. 59: 169–181.
97 97 Żukowski, M., Zeilinger, A., Horne, M.A., and Ekert, A.K. (Dec. 1993). “Event‐readydetectors” bell experiment via entanglement swapping. Phys. Rev. Lett. 71: 4287–4290.
98 98 Deutsch, D. et al. (1996). Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77: 2818–2821.
99 99 Wootters, W.K. and Zurek, W.H. (1982). A single quantum cannot be cloned. Nature 299 (5886): 802–803.
100 100 Dieks, D. (1982). Communication by EPR devices. Phys. Rev. A Gen. Phys. 92 (6): 271–272.
101 101 Bennett, C.H., Brassard, G., Crépeau, C. et al. (Mar. 1993). Teleporting an unknown quantum state via dual classical and Einstein‐Podolsky‐Rosen channels. Phys. Rev. Lett. 70: 1895–1899.
102 102 Van Meter, R. (2014). Quantum Networking. Wiley.
103 103 Lloyd, S., Shapiro, J.H., Wong, F.N. et al. (2004). Infrastructure for the quantum internet. ACM SIGCOMM Computer Commun. Rev. 34 (5): 9–20.
104 104 Castelvecchi, D. (2018). The quantum internet has arrived (and it hasn't). Nature 554 (7692): 289.
105 105 Bennett, C.H. and Brassard, G. (2014). Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560 (P1): 7–11.
106 106 Ekert, A.K. (1991). Quantum cryptography based on bell theorem. Phys. Rev. Lett. 67 (6): 661.
107 107 Broadbent, A. and Schaffner, C. (2016). Quantum cryptography beyond quantum key distribution. Des. Codes Cryptogr. 78 (1): 351–382.
108 108 Wehner, S., Elkouss, D., and Hanson, R. (2018). Quantum internet: a vision for the road ahead. Science 362 (6412): eaam9288.
109 109 Van Meter, R., Ladd, T.D., Munro, W., and Nemoto, K. (2009). System design for a long‐line quantum repeater. IEEE/ACM Trans. Netw. (TON) 17 (3): 1002–1013.
110 110 Simon, C., De Riedmatten, H., Afzelius, M. et al. (2007). Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98 (19): 190503.
111 111 Sangouard, N., Dubessy, R., and Simon, C. (2009). Quantum repeaters based on single trapped ions. Phys. Rev. A 79 (4): 042340.
112 112 M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” 2002.
113 113 Bennett, C.H., Brassard, G., Crepeau, C. et al. (1993). Teleporting an unknown quantum state via dual classical and Einstein‐Podolsky‐Rosen channels. Phys. Rev. Lett. 70 (13): 1895.
114 114 Caleffi, M. (2017). Optimal routing for quantum networks. IEEE Access 5: 22 299–22 312.
115 115 Gyongyosi, L. and Imre, S. (2018). Decentralized base‐graph routing for the quantum internet. Phys. Rev. A 98 (2): 022310.
116 116 Van Meter, R., Satoh, T., Ladd, T.D. et al. (2013). Path selection for quantum repeater networks. Netw. Sci. 3 (1–4): 82–95.
117 117 Perseguers, S., Lapeyre, G. Jr., Cavalcanti, D. et al. (2013). Distribution of entanglement in large‐scale quantum networks. Rep. Prog. Phys. 76 (9): 096001.