Читать книгу Инвестиции и трейдинг. Формирование индивидуального подхода к принятию инвестиционных решений - Саймон Вайн - Страница 9
Часть I
Сравнительный анализ методов прогнозирования рынка
Глава 1.1
Финансовая теория и фундаментальный анализ
3. Проблемы моделирования
ОглавлениеПроблемы, связанные с информацией
Важность критического подбора информации для построения модели
Конечная цель изучения информации – достижение ряда целей, основной из которых является выявление ключевых факторов, необходимых для построения модели. Изначально же требуется найти информацию, необходимую для разработки и тестирования моделей.
Финансовую информацию можно разделить на четыре категории:
– немедленно известную. Теория эффективного рынка исходит из того, что эта категория является доминирующей (universally-informed trading);
– менее известную, но быстро отражаемую в ценах посредством действий профессиональных трейдеров (professionally-informed trading);
– инсайдерскую, которую рынок предполагает почерпнуть на основе наблюдений за действиями трейдеров, обладающих доступом к закрытым источникам (derivatively-informed trading);
– неизвестную, но прогнозируемую (uninformed trading).
Следует критически оценить все четыре типа информации в соответствии с этой классификацией, но мы остановимся на первом. Важным каналом обмена немедленно доступной информацией являются информационные агентства и средства массовой информации в целом[53]. Естественно, что СМИ имеют разные стандарты достоверности. Так, некоторые из них публикуют материалы, основанные на слухах и домыслах, а другие предпочитают использовать только проверенную информацию. Кроме того, репортеры придают своим отчетам собственную эмоциональную и политическую окраску, искажая факты аналогиями и метафорами. Так, во время кризиса 1998 г. в репортажах CNN, посвященных дефолту российских банков, постоянно фигурировали кадры с изображением филиалов Альфа-Банка. Хотя последний исполнял свои обязательства перед вкладчиками и повода для подобного освещения событий не давал, но, как потом оказалось, у CNN не нашлось под рукой видеозаписи с изображением других банков. На рынке распространилось мнение, что Альфа-Банк несостоятелен, и невинная на первый взгляд ошибка телеканала чуть не привела к его банкротству. Таким образом, на любом уровне доступа к информации нет гарантии ее качества.
Чтобы извлечь уроки из прошлого, необходимо не только очистить исторические данные от технических ошибок и трактовок, но и осмыслить, какие реальные события стоят за теми или иными цифрами. Именно понимание сути явлений, произошедших в прошлом, обеспечивает гибкость и достоверность будущей модели.
Однако найти полное и точное описание событий, как правило, невозможно, особенно в случаях рыночной аномалии; память рынка очень коротка и точностью не отличается. Фактически ее можно назвать эмоциональными воспоминаниями, а не представить в виде поэтапных аналитических расслоений тех или иных событий на составные части. Например, в начале 1990-х гг., когда в очередной раз ожидался кризис американской финансовой системы, управляющий фондом одного из крупнейших инвестиционных банков в Нью-Йорке попытался воссоздать события, сопутствовавшие падению рынка акций в октябре 1987 г. К его удивлению, в банке не оказалось ни зафиксированной информации, ни людей, способных вспомнить и прокомментировать произошедшее. Иными словами, найти историю движения цен и объемов торгов не представляло сложности, но восстановить сопутствующую информацию (слухи, сообщения) было практически невозможно.
Частично это явление можно объяснить значительной текучестью персонала, которая является следствием каждого кризиса. Кроме того, редко существует «единственно верная» трактовка того, что явилось его отправной точкой. Например, нет описания российского дефолта 1998 г., которое рынок мог бы признать точным.
Таким образом, на первом же этапе построения моделей возникает сложность нахождения информации для построения и тестирования гипотез, закладываемых в их основу, а затем калибрования моделей для использования в прогнозировании. Анализ ряда ключевых исследований, приведенный ниже, показывает, насколько меняются выводы в зависимости от исходной информации. Поэтому статистики и говорят, что, «если мучить цифры достаточно долго, можно получить любой желаемый результат».
Реакция рынка на неожиданную информацию
Неожиданные события имеют большое значение для оценки эффективности теории финансовой экономики. Продемонстрируем принятие решения в момент появления новой информации. В середине 1994 г. президент России отдал приказ вооруженным силам о захвате Думы – этим закончилось противостояние спикера Государственной думы Р. Хаcбулатова президентской власти. На рынках валют резко вырос курс доллара. Сообщения информационных агентств с новостями из Москвы поступали непрерывно.
Спустя несколько минут после очередного сообщения дилер одного из российских банков получил несколько звонков от зарубежных коллег с вопросом о том, кто такой Хаcбулатов и какова его роль в происходящих событиях. Сигнал к каким действиям дали эти звонки дилеру?
Доллар в то время играл функцию «безопасной гавани», и когда в тех или иных регионах мира возникала напряженная ситуация, повышался его курс по отношению ко многим другим валютам. Политическая нестабильность в России также вызывала рост доллара. В таких ситуациях очень важно найти ответ на следующий ключевой вопрос: вся ли информация уже отражена в текущей рыночной цене, т. е. купили ли доллар все те, кто нервничал из-за нестабильности ситуации. Звонки из-за границы показали, что многие пытаются разобраться в происходящем и вряд ли информация уже полностью «в цене». Таким образом, дилеру следовало покупать доллар.
Историю реакций рынка на кризисные события демонстрирует таблица 1.1.
Примечания
– Уровни изменения для 22, 63, 126 и 253 дней рассчитаны от последнего дня в колонке, где указаны даты реакции на событие. Первая дата указывает начало рыночной реакции или торговый день, предшествующий событию.
– Рыночные дни.
– В 1916 г. список из 20 акций DJIA был пересмотрен и пересчитан к открытию курса 12 декабря 1914 г.
Источник: индекс Доу-Джонса, 1885–1990 гг.
Из таблицы можно сделать много интересных выводов. Особенно любопытно поведение рынка в дни, предшествующие оккупации Франции Германией в 1940 г. Оказывается, столь стремительная корректировка цен произошла ввиду того, что все европейские рынки следовали повышательной тенденции в месяцы, предшествующие событию. Представьте себе ситуацию в Европе в то время: полная милитаризация, нацисты только что оккупировали несколько стран, английские войска перебрасываются во Францию, а рынок растет. Не правда ли, этот факт подрывает веру в рациональность инвесторов и в их способность правильно трактовать информацию?
Проанализировав данные, приведенные в таблице, можно также сделать вывод о непредсказуемости реакции рынка на неожиданные события. Интересно, что большинство кризисных ситуаций не мешают быстрому восстановлению его позитивной динамики.
Проблемы процесса нахождения модели для прогнозирования
Процесс построения моделей
Рассмотрим методы, используемые «фундаменталистами» для прогнозирования на разных рынках. Для общего понимания процесса построения модели обратимся к профессору Ричарду Левичу, который показывает последовательность нахождения рабочей модели для построения прогноза на рынке валют.
«Выбор можно сделать из многих моделей: монетарный подход, портфельный баланс, покупательный паритет. После избрания модели под нее подбирают параметры: М1, М2, М3, валовой продукт, индекс роста цен, текущий баланс и т. д. Наконец, следует остановиться на одном из методов подсчета: обычное квадратическое отклонение, обобщенное квадратическое отклонение, общий метод моментов и т. д. Предположим, инвестор успешно идентифицировал модель, по которой курс спот S является функцией f набора неизвестных Хi: S = f (Х1, Х2…., Хn). Таким образом, спот в 2001 г. (статья была написана в 1999 г. – С.В.), а возможно, и позднее, будет функцией Х1 в 2001 г., Х2 – в 2001 г., Х3 – в 2001 г. Но определение значений этих неизвестных в 2001 г. и далее – задача не из легких.
В таком случае инвестор может отвергнуть структурный подход и не следовать, например, структурному анализу временных рядов, а использовать одно- и многопараметрические модели анализа временных рядов, спектральный анализ временных рядов и метод нейронных сетей. Но и для этих моделей инвестор должен выбрать параметры и методы оценки.
Вне зависимости от избранного метода анализа он столкнется со стандартными эконометрическими проблемами, такими, например, как определение объема информации, необходимой для использования модели. В заключение следует напомнить, что модель, возможно, будет объяснять только прошлое, если в итоге историческая информация не окажется индикатором будущей информации»[54].
Иными словами, для успеха прогнозирования необходимо правильно подобрать и синхронизировать многие «движущие части». К сожалению, как показал кризис финансовых рынков в Бразилии в 2002 г., даже при наличии полной информации и экономически прогрессивном правительстве достаточно одного просчета в предположениях – и самые надежные прогнозы мгновенно рушатся. Продемонстрируем вариант практического анализа этой ситуации.
Накануне выборов 2002 г. рынок оценивал состояние бразильской экономики как стабильное и испытывал большое доверие к способности Банка Бразилии контролировать ситуацию на финансовых рынках. Однако в течение мая – июля вероятность победы кандидата, не поддерживающего рынок, резко возросла. Попытаемся сделать прогноз, какое влияние может оказать руководство страны, неблагоприятно относящееся к рынку, на изменение цен на международных
53
Gilson R. J., Kraakman R. The Mechanism of Market Efficiency Twenty Years Later: The Hindsight Bias, Columbia Law and Economics, Working Paper, No. 240, October 2003.
54
Levich R.M. Can Currency Movements Be Forecasted? AIMR Conference Proceedings: Currency Risk in Investment Portfolios, June 1999, p. 30.