Читать книгу Эволюция. От Дарвина до современных теорий - Сборник - Страница 13

3
Дарвин и ДНК: как генетика подстегнула эволюционную теорию
Как происходит эволюция генов

Оглавление

Благодаря секвенированию геномов все большего количества видов, мы можем не только проследить за эволюцией тел животных, но и определить генетические мутации, стоящие за подобными изменениями.


Но самое интересное здесь то, что теперь мы можем увидеть, как возникают гены – главные составляющие ключевой основы жизни – белков. И история разворачивается не совсем так, как ожидалось.

Самый очевидный путь развития нового гена – это постепенное накопление незначительных полезных мутаций. Наименее очевидный сценарий: существующий ген, играющий важную роль, эволюционирует в другой ген. Вероятность того, что уже существующий ген сможет развиться в новый без изменения самого организма, весьма мала. Однако, как было замечено биологами столетие назад, данное ограничение вполне преодолимо в случаях, когда мутации создают дополнительную и полноценную копию гена.

Из учебников мы знаем, что процесс формирования новых генов начинается с дупликации генов. В большинстве случаев одна из копий генов приобретет вредные мутации и будет отсеяна. Однако иногда случается и так, что мутация позволяет дублированному гену выполнять нечто новое. Данная копия становится специализированной для своей новой роли, а предковый ген продолжает выполнять старые функции.

Поразительно то, что дупликация генов оказалась почти так же распространена, как и мутации, которые изменяют одну «букву» кода ДНК. При обмене материалом между хромосомами, предшествующему половому размножению, ошибки могут создавать дополнительные копии длинных последовательностей ДНК, в которых может содержаться любая информация – от одного гена до сотен. Здесь, как и при синдроме Дауна, могут дублироваться целые хромосомы, а иногда даже целые геномы.

Поскольку в процессе эволюции дублирование способно создать триллионы генетических копий, нет ничего удивительного в том, что в течение сотен миллионов лет один предковый ген способен породить сотни новых. У нас, людей, имеется порядка 400 генов для одних только обонятельных рецепторов. И все они происходят всего от двух рыб, живших около 450 миллионов лет назад.

Не конец истории

И все же классические взгляды на эволюцию генов не дают объяснения всей картины в целом. Зачастую гены несут в себе более одной функции… так что же происходит при дублировании гена? Если мутация убирает одну из двух существующих функций в первой копии гена, то организм сможет прекрасно существовать, поскольку вторая копия останется неизменной. Даже если еще одна мутация уберет другую функцию из второй копии гена, организм продолжит свое нормальное функционирование.

Теперь вместо одного гена с двумя функциями организм получит два гена с одной функцией в каждом. Данный механизм получил название «субфункционализация». Этот процесс может служить исходным материалом для дальнейшей эволюции.

Но настоящая проблема классической модели эволюции обуславливается фактическими исследованиями новых генов в различных организмах. Например, сравнение геномов нескольких близкородственных видов дрозофилы обнаружило новые гены, которые образовались через 13 миллионов лет после отделения данного вида от общего предка.

Так стало ясно, что около 10 % новых генов возникает в результате процесса под названием «ретропозиция». Ретропозиция происходит в тот момент, когда копии генов матричной РНК (генетические схемы, отправляемые на фабрику по производству белка в клетке, см. рис. 3.3) возвращаются обратно в ДНК, которая затем внедряется в другом месте генома.

Многие вирусы и генетические паразиты копируют себя с помощью ретропозиции, а производимые ими ферменты иногда случайным образом ретропозицируют РНК клетки-хозяина.

Возможно, что этот процесс ответственен за создание многих из недавно появившихся генов у нас, приматов. Вспышка ретропозиции у наших предков, достигшая своего пика около 45 миллионов лет назад, дала толчок к развитию многих тысяч дубликатных генов, и около 60–70 из них эволюционировали в новые гены. Данная вспышка, скорее всего, была обусловлена появлением нового генетического паразита, проникавшего в наш геном.

Эволюция новых генов часто включает в себя еще более радикальные изменения. Например, у дрозофил треть новых генов значительно отличалась от родительских, теряя часть своих последовательностей или приобретая новые участки ДНК.

Откуда берутся эти дополнительные последовательности? В сложных клетках ДНК, кодирующая белок, разбивается на несколько частей, разделенных некодирующими последовательностями. После создания РНК-копии всего гена некодирующие части (интроны) вырезаются, а кодирующие части (экзоны) сращиваются. Затем эта измененная копия РНК отправляется на белковую фабрику. Модульная форма генов значительно увеличивает вероятность мутаций благодаря перетасовке существующих генов и генерации новых белков. Происходить это может различными способами: экзоны внутри гена могут теряться, дублироваться или даже объединяться с экзонами других генов для создания нового химерного гена.

Вариации на тему

Например, большинство обезьян производят белок под названием TRIM5, который защищает их от заражения ретровирусами. Около 10 миллионов лет назад у одной макаки из Азии рядом с геном TRIM5 была добавлена неактивная копия гена CypA, полученная путем ретропозиции. Дальнейшая мутация привела к тому, что клетки продуцировали химерный белок, который на половину TRIM5, а на половину – CypA.

Данный белок обеспечивал лучшую защиту от некоторых вирусов. В это сложно поверить, но ген TRIM5-CypA эволюционировал не один, а целых два раза. Почти то же самое произошло с трехполосыми дурукули в Южной Америке.

При наличии достаточного количества времени – или, скорее, достаточного количества мутаций – дупликация и перетасовка генов может приводить к появлению новых генов, значительно отличающихся от предковых. Но все ли новые генные вариации соответствуют друг другу или же эволюция способна создавать новые гены, отличные от уже существующих?

Пару десятилетий назад было высказано предположение о том, что уникальные гены могут возникать в результате так называемой мутации сдвига рамки считывания. Каждая аминокислота в белке определяется тремя «буквами» ДНК или нуклеотидами – триплетом (кодоном). Если мутация сдвигает начальную точку считывания кодонов (рамку считывания) на один или два нуклеотида, то конечная последовательность белка будет совершенно иной.

Поскольку ДНК состоит из двух цепочек, то любой ее фрагмент можно «прочитать» шестью различными способами.

Генетический абсурд

Подавляющее большинство мутаций, изменяющих рамку считывания гена, приводят к появлению генетического абсурда. Как правило, опасного. Многие генетические заболевания являются результатом мутации сдвига рамки считывания, разрушающей белки. Это немного похоже на замену каждой буквы алфавита на соседнюю. Результат, как правило, получается абсурдным. Но не всегда.

Другим источником уникальных новых генов может быть «мусорная» ДНК, засоряющая большинство геномов. Первые догадки об этом были высказаны два десятилетия назад, когда команда из Иллинойского университета раскрыла происхождение антифризного белка, вырабатываемого одной антарктической рыбой. Изначально данный ген появился в качестве пищеварительного фермента. Около 10 миллионов лет назад, когда климат на планете стал прохладнее, часть одного из интронов (иными словами – часть «мусорной» ДНК) превратилась в экзон, а затем многократно дублировалась, создавая характерную повторяющуюся структуру антифризных белков.

Так из случайного фрагмента ДНК развился ген, жизненно необходимый для выживания рыбы. Тем не менее этот антифризный ген эволюционировал из уже существующего.

Каковы шансы появления мутаций в «мусорной» ДНК, которые смогли бы сгенерировать полноценный новый ген с нуля? Как до недавнего времени считало большинство биологов, – практически нулевые. Ведь для того, чтобы фрагмент случайной ДНК превратился в ген, потребуется целый комплекс маловероятных условий. Во-первых, некая часть ДНК должна выступить в роли промотора, который укажет клетке на необходимость создания РНК-копий из остальных фрагментов. Во-вторых, эти копии РНК должны обладать последовательностью, которую можно будет преобразовать в схему жизнеспособной матричной РНК для белковой фабрики.

Более того, эта матричная РНК должна закодировать достаточно длинную белковую цепочку (в среднем длина белка составляет 300 аминокислот). Данный вариант крайне маловероятен, поскольку на случайном отрезке ДНК примерно 1 из 20 кодонов окажется «стоп-кодоном». И, наконец, новый белок должен выполнять некую полезную функцию. Все эти трудности казались непреодолимыми.

Данная точка зрения изменилась в 2006 году, когда Дэвид Бегун из Калифорнийского университета и Дэвис с коллегами обнаружили у дрозофил несколько новых генов с последовательностями, не похожими ни на один из старых генов. Они предположили, что эти гены, кодирующие относительно небольшие белки, эволюционировали из «мусорной» ДНК в течение последних нескольких миллионов лет. Пару лет спустя в процессе поиска новых генов у дрозофил были обнаружены еще девять генов, которые, похоже, самостоятельно образовались из «мусорной» ДНК. Другое исследование показало, что с тех пор, как ветви эволюции человека и шимпанзе разошлись более 6 миллионов лет назад, из некодирующей ДНК появилось как минимум шесть новых человеческих генов.

Чем же объяснить столь большую цифру при ничтожно малой вероятности самостоятельного образования гена? Частичным ответом может служить недавнее открытие: несмотря на то что половина нашего генома является «мусорной», 90 % генов можно случайно транскрибировать в РНК.

Это означает, что случайные фрагменты «мусорной» ДНК могут превращаться в белок не так уж и редко. Поскольку, скорее всего, большая часть случайных белков окажется вредной, естественный отбор уничтожит эти последовательности ДНК. Однако время от времени возникает одна удачная мутация. Последовательность, которая делает что-то полезное, будет передаваться внутри популяции и быстро превратится в новый ген, оптимизированный под любую нужную роль.

Пройдет еще много лет, прежде чем мы до конца поймем важность различных механизмов образования новых генов. Однако уже сейчас очевидно, что классический взгляд на эволюцию генов не дает нам полного объяснения. Эволюция не любит суету: она берет новые гены везде, где ей это удается.

Новые данные о последовательностях позволяют биологам стать на шаг ближе к тому, чтобы объяснить эволюцию каждого из наших 20 000 генов.

Эгоистичный ген

Книга Ричарда Докинза «Эгоистичный ген» (1976) популяризировала идеи о том, что истинной мерой эволюции служит ген, а не особь. В книге говорилось о том, что люди – это «биороботы, запрограммированные слепо следовать сохранению эгоистичных молекул под названием "гены"». Понятие «эгоистичный ген» хорошо прижилось в эволюционной генетике и стало самой успешной научной метафорой последних лет. С небольшим отрывом второй по популярности считается «расширенный фенотип».

Оба термина были придуманы Ричардом Докинзом (см. интервью в главе 9) и послужили названиями для его первых научно-популярных книг.

Основная идея «Эгоистичного гена» сводится к тому, что эволюция заключается в естественном отборе генов и только их. Докинз видит в них лучших кандидатов на звание «единиц репликации» эволюции. Таким образом, передаваемыми генами являются те, чьи последовательности выполняют определенные функции на генном уровне (с целью дальнейшей репликации) и при этом не обязательно являются полезными для организма на более высоком уровне или на уровне групп организмов.

«Расширенный фенотип» Докинза (1982) продолжает эту идею, утверждая, что в своем стремлении к выживанию и репликации гены распространяют свое влияние за пределы признаков (или фенотипа) особи во внешний мир, где они также повышают шансы на выживание. Вспомните, например, плотину бобра или паутину паука. Тем не менее многие биологи уверены, что настало время для переосмысления геноцентрического взгляда на эволюцию (см. главу 11).

Эволюция. От Дарвина до современных теорий

Подняться наверх